Skip to main content
Log in

Twin Symmetric E-plane Slab Loaded Waveguide Structure for Point Beam Acceleration

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Renewed interest regarding the exploitation of dielectric loaded waveguides in high gradient accelerator structures requires a closed form field formulation as cut-off frequencies and optimisation are problematic for numerical methods. In this paper we will present efficient closed form solution for generic slab loaded waveguide boundary value problems. This solution offers flexibility in a sense that it can be further exploited to derive a Green’s function linking transverse field expressions for planar structures. The developed solution is demonstrated for a twin slab E-plane slab loaded structure coupled to a Point source emitter assembly. The emission characteristics of the point source emitter assembly are optimized to generate a high intensity and focused beam to be fed to this E-plane slab loaded waveguide structure for beam acceleration. The field analysis, mode nomenclature, modal hierarchy, modal bandwidth, cut-off plane, impedance plane and dispersion relations for this accelerating structure is included for sake the of completeness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. E. Korbly, A. S. Kesar, and R. J. Temkin, Observation of frequency locked coherent terahertz Smith Purcell radiation. Phys. Rev. Lett. 94, 2005.

  2. Kwan, and J. L. Hirshfield, Theory of Wake Fields in a multizone dielectric lined waveguide. Phys. Rev. ST. Accel. Beams 9(3), (2006).

  3. E. L. Chu, and W. W. Hansen, The theory of disc loaded waveguide. J. Appl. Phys. 18, 996–1008 (1947).

    Article  Google Scholar 

  4. R. B. Yoder, and J. B. Rosenzweig, Side coupled slab symmetric structure for high gradient acceleration using THz Power. Phys. Rev. ST. Accel. Beams 8(11), 2005.

  5. C. Rauscher, Design of dielectric –filled cavity filters with ultra wide stopband characteristics. IEEE Trans. Microw. Theory Tech. 53, 1918–1926 (2005).

    Article  Google Scholar 

  6. S. Amari, R. Vahldieck, and J. Bornemann, Spectrum of corrugated and periodically loaded waveguides from classical matrix eigenvalues. IEEE Trans. Microw. Theory Tech. 48, 453–460 (2000).

    Article  Google Scholar 

  7. J. B. Rosenzweig, B. Breizman, T. Katsouleas, and J. J. Su, Acceleration and focusing of electrons in two dimensional non-linear Plasma Wake fields. Phys. Rev A. 44(10), 6189–6192 (1991), Nov.

    Article  Google Scholar 

  8. A. Tremaine, X. J. Wang, M. Babzein, and J. Rosenzweig, Fundamental and Harmonic microbunching in high-gain self amplified spontaneous emission free-electron laser. Phys. Rev. E. 66(3), 36503–36506 (2002).

    Article  Google Scholar 

  9. C. Jing, W. Gai, R. Konencny, S. H. Gold, W. Liu, and A. K. Kinkead, High power RF test on X-Band dielectric loaded accelerating structures. IEEE Trans. Plasma Sci. 33(4), 1155–1160 (2005).

    Article  Google Scholar 

  10. S. K. Pash, and J. L. Hirshfield, Theory of wake fields in a dielectric lined waveguide. Phys. Rev E. 62(1), 1266–1283 (2000).

    Article  Google Scholar 

  11. A. Tremaine, and J. Rosenzweig, Electromagnetic wake fields and beam stability in slab symmetric dielectric structures. Phys. Rev E. 56(6), 7204–7216 (1997).

    Article  Google Scholar 

  12. L. G. Shen, and L. Y. Gu, Hybrid mode analysis of a slow–wave free electron laser with a rectangular guide loaded with two slabs of dielectric. Phys. Rev E. 50(5), 4262–4264 (1994).

    Article  Google Scholar 

  13. Y. Y. Lau, Classification of Beam Break–up instabilities in linear accelerators. Phys. Rev. Lett. 63(11), 1141–1144 (1989), Sep.

    Article  Google Scholar 

  14. L. Xiao, W. Gai, and X. Sun, Field Analysis of a dielectric loaded Rectangular waveguide accelerating structure. Phys. Rev E. 65, 2001.

  15. P. Zhou, W. Gai, and X. Sun, Construction and testing of 11.4 GHz dielectric structure based Travelling wave accelerator. Rev. Sci. Instr. 71, 2000.

  16. W. K. H. Panofsky, and W. A. Wenzel, Some considerations concerning the transverse deflections of charged particles in radio-frequency fields. Rev. Sci. Instr. 27, 1956.

  17. H. H. Braun, CERN CLIC Note 364, 1998.

  18. T. B. Zhang, J. L. Hirshfield, T. C. Marshall, and B. Hafizi, Simulated dielectric wake field accelerator. Phys. Rev. E 56, 4647–4655 (1997), Oct.

    Article  Google Scholar 

  19. K. Yuan Ng, Wakefield in a dielectric lined waveguide. Phys. Rev D. 42, 1819–1828 (1990).

    Article  Google Scholar 

  20. J. G. Power, W. Gai, and P. Schoessow, Wakefield excitation in multi-mode structures by a train of electron bunches. Phys. Rev E. 60(5), 1819–1828 (1991), Nov.

    Google Scholar 

  21. W. Gai, A. D. Kanareykin, A. L. Kustov, and J. Simpson, Numerical simulations of intense charged particle beam propagation in dielectric wake field accelerator. Phys. Rev E. 55(3), 3481–3488 (1997).

    Article  Google Scholar 

  22. M. Rosing, and W. Gai, Longitudinal and transverse wake field effects in dielectric structures. Phys. Rev D. 42, 1829–1834 (1990).

    Article  Google Scholar 

  23. W. Gai, P. Schoessow, B. Cole, R. Konencny, J. Norem, J. Rosenzweig, and J. Simpson, Experimental demonstration of wake-Fields effects in dielectric structures. Phys. Rev. Lett. 24, 2756–2758 (1988).

    Article  Google Scholar 

  24. J. Rosenzweig, D. B. Cline, B. Cole, H. Figuero, W. Gai, R. Konencny, J. Norem, P. Schoessow, and J. Simpson, Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61(1), 98–101 (1988).

    Article  Google Scholar 

  25. H. Figuero, W. Gai, R. Konencny, J. Norem, P. Schoessow, and J. Simpson, Direct measurement of beam induced fields in accelerating structures. Phys. Rev. Lett. 60(21), 2144–2147 (1998).

    Article  Google Scholar 

  26. W. Gai, and P. Schoessow, Design and simulation of high frequency, high power rf extraction device using a dielectric loaded waveguide. Nucl. Instrum. Methods Phys. Res. A 459(2001).

  27. C. Jing, W. M. Liu, W. Gai, J. G. Pover, and T. Wong, Modal analysis of multilayered dielectric loaded accelerating structure. Nucl. Intrum. Methods Phys. Res. B. 539(3), 445–454 (2005), March.

    Article  Google Scholar 

  28. K. Bierwirth, N. Schulz, and F. Arndt, Finite difference analysis of rectangular dielectric waveguide structures. IEEE Microw. Theor. Trans. 34(11), 1104–1114 (1986), Nov.

    Article  Google Scholar 

  29. W. E. Boyse, D. R. Lynch, K. D. Paulsen, and G. N. Minerbo, Nodal based Finite Element modelling of Maxwell’s equation in three dimensions. IEEE Trans. Antenna & Propag. 40, 642–651 (1992).

    Article  MATH  Google Scholar 

  30. J. B. McGinn, L. W. Swanson, and N. A. Martin, J. Vac. Sci. Technol. B9, 2925–2928 (1991).

    Google Scholar 

  31. T. Ohgo, T. Hara, M. Hamagaki, K. Ishii, and M. Otsuka, J. Appl. Phys. 70, 4050–4052 (1991).

    Article  Google Scholar 

  32. K. C. Mooffiet, in Proc. 9th Int. Symp., High Energy Spin Physics. (Bonn, Germany, 1990).

  33. S. Schiller, U. Heisig, and S. Panzer, Electron beam technology. John Wiley & Sons, Inc., (1982) 50,190–192.

  34. K. Saito, and Y. Uno, Nucl. Inst. Meths A 363, 48–53 (1995).

    Article  Google Scholar 

  35. K. Masood, M. Iqbal, S. A. Bhatti, and M. Zakaullah, Nucl. Inst. Meth. Phys. Research A 584(1), 9–24 (2008).

    Article  Google Scholar 

  36. Z. J. Cendes, and P. Silvester, Numerical Solution of dielectric loaded waveguides: I. Finite element analysis. IEEE Microw. Theory Trans. 18, 1124–1131 (1970).

    Article  Google Scholar 

  37. K. Isle, and M. Koshiba, Numerical analysis of H-plane waveguide junctions by combination of finite and boundary element. IEEE Microw. Theory Trans. 36(9), 1343–1351 (1988), Sep.

    Article  Google Scholar 

  38. C. T. Liu, and C. H. Chen, A variational theory for wave propagation in inhomogeneous dielectric slab loaded waveguides. IEEE Microw. Theory Trans. 29, 805–812 (1981), Aug.

    Article  Google Scholar 

  39. D. T. Thomas, Functional approximation for solving boundary value problems by computer. IEEE Microw. Theory Trans. 17(8), 447–454 (1969), Aug.

    Article  Google Scholar 

  40. M. Koshiba, and M. Suzuki, Application of boundary element method to waveguide discontinuities. IEEE Microw. Theory Trans. 34, 301–307 (1986), Feb.

    Article  Google Scholar 

  41. Y. Mushiake, and T. Ishida, Characteristics of loaded rectangular waveguides. IEEE Microw. Theory Trans. 13(4), 451–457 (1965), Jul.

    Article  Google Scholar 

  42. R. H. Jansen, The spectral domain approach for microwave integrated circuits. IEEE Microw. Theory Trans. 33(10), 1043–1056 (1985), Oct.

    Article  Google Scholar 

  43. T. Itoh, and R. Mittra, Spectral domain approach for calculating dispersion characteristics of microstrip lines. IEEE Microw. Theory Trans. 33(10), 496–499 (1973), Oct.

    Article  Google Scholar 

  44. K. Solbach, and I. Wolf, The Electromagnetic field and phase constants of dielectric image lines. IEEE Microw. Theory Trans. 26, 266–274 (1978), Apr.

    Article  Google Scholar 

  45. A. S. Subdo, Improved formulation of the film mode matching method for mode field calculation in dielectric waveguides. Pure Appl. Opt. 3, 381–383 (1994).

    Article  Google Scholar 

  46. L. E. Lebraic, and D. Kajfez, Analysis of dielectric resonator cavities using finite integration technique. IEEE Microw. Theory Trans. 37(11), 1740–1748 (1989), Nov.

    Article  Google Scholar 

  47. V. Catina, and F. Arndt, Hybrid surface integral equation /Mode matching method for the analysis of dielectric loaded waveguide filters. IEEE Microw. Theory Trans. 53(11), 3562–3567 (2005), Nov.

    Article  Google Scholar 

  48. F. Allesandri, and D. Schimdt, The electric field integral equation method for the analysis and design of rectangular cavity filters loaded by dielectric and metallic cylinder pucks. IEEE Microw. Theory Trans. 52(8), 1790–1797 (2004), Aug.

    Article  Google Scholar 

  49. G. P. Bava, and C. Naldi, Discussion of some design methods for dielectric steps in rectangular waveguides. IEEE Microw. Theory Trans. 18(3), 167–168 (1970), Mar.

    Article  Google Scholar 

  50. V. Bilik, and R. N. Simons, On Mode classification in rectangular waveguide partially filled with dielectric slabs. IEEE Microw. Theory Trans. 34(2), 297–298 (1986), Feb.

    Article  Google Scholar 

  51. K. Oqusu, Experimental study of dielectric waveguide Y-junctions for millimetre–wave integrated circuits. IEEE Microw. Theory Trans. 33(6), 506–509 (1985), Jun.

    Article  Google Scholar 

  52. M. Cohn, Propagation in a dielectric –loaded parallel plane waveguide. IEEE Microw. Theory Trans. 7(2), 202–208 (1959), Apr.

    Article  Google Scholar 

  53. J. J. Choi, C. M. Armstrong, A. K. Gangulay, and L. M. Barsanti, Design of a 50 KW wideband Ka-band slow wave cyclotron amplifier. IEEE Microw. Theory Trans. 22(4), 465–475 (1994), Aug.

    Google Scholar 

  54. J. G. Ma, Numerical analysis of the characteristics of TE modes of waveguides loaded with inhomogeneous dielectrics. IEE Proc-H, 139(1), 109–112 (1991), Feb.

    Google Scholar 

  55. K. Mehray, and B. Rashielein, Polynomial expansion for extraction of electromagnetic Eigen modes in layered structures. J. Opt. Soc. Am. B. 20, 2434–2441 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Ms Tasneem Zafar for her valuable suggestions. Mr. Arthur Haigh and Mr. William Keith contributed to the material development work. Mr. Junaid Zafar is funded by a Pakistani Government HEC scholarship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Zafar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zafar, H., Zafar, J., Gibson, A.A.P. et al. Twin Symmetric E-plane Slab Loaded Waveguide Structure for Point Beam Acceleration. J Infrared Milli Terahz Waves 30, 159–171 (2009). https://doi.org/10.1007/s10762-008-9432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-008-9432-z

Keywords

Navigation