Skip to main content

Advertisement

Log in

Rho kinase Blockade Ameliorates DSS-Induced Ulcerative Colitis in Mice Through Dual Inhibition of the NF-κB and IL-6/STAT3 Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammatory bowel disease (IBD) has received much attention due to its increasing worldwide incidence and potential increased risk of colorectal cancer. The protective function of a Rho-associated protein kinase inhibitor (Y-27632) against 2,4,6-trinitrobenzene sulfonic acid (TNBS) induced mouse colitis has been proven in previous studies, but the concrete therapeutic mechanism of Y-27632 is still not completely illuminated. This current research is intended for further investigation of the effect and mechanism of Y-27632 in a mouse model of acute experimental ulcerative colitis induced by dextran sulfate sodium (DSS). A total of 24 male BALB/c mice were randomly separated into the following three groups (n = 8 per group) and injected intraperitoneally with the corresponding reagents for 7 days: control group (PBS), DSS group (PBS), and Y-27632 group (PBS and Y-27632; 10 mg/kg). Our data indicated that Y-27632 could significantly improve the severity of colitis, as evidenced by the disease activity index (DAI) scores, histological damage, and colon length. Additionally, Y-27632 treatment significantly decreased CD68 and proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-17F (IL-17F), and interleukin-6 (IL-6). Furthermore, Y-27632 potently and pleiotropically suppressed nuclear factor-κB (NF-κB) and signal transduction and transcriptional activator 3 (STAT3) activation as well as the activity of prosurvival genes that are dependent on these transcription factors. In summary, the study demonstrates that Y-27632 exerts ameliorative effects on colonic inflammation mediated through dual inhibition of the NF-κB and IL-6/STAT3 pathways and thus is likely to function as a prospective novel treatment for human ulcerative colitis (UC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ma, X., Y. Hu, X. Li, X. Zheng, Y. Wang, J. Zhang, C. Fu, and F. Geng. 2018. Periplaneta americana ameliorates dextran sulfate sodium-induced ulcerative colitis in rats by Keap1/Nrf-2 activation, intestinal barrier function, and gut microbiota regulation. Frontiers in Pharmacology 9: 944. https://doi.org/10.3389/fphar.2018.00944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ananthakrishnan, A.N., H. Khalili, G.G. Konijeti, L.M. Higuchi, P. de Silva, C.S. Fuchs, W.C. Willett, J.M. Richter, and A.T. Chan. 2014. Long-term intake of dietary fat and risk of ulcerative colitis and Crohn’s disease. Gut 63 (5): 776–784. https://doi.org/10.1136/gutjnl-2013-305304.

    Article  CAS  PubMed  Google Scholar 

  3. Targan, S.R., and L.C. Karp. 2005. Defects in mucosal immunity leading to ulcerative colitis. Immunological Reviews 206: 296–305. https://doi.org/10.1111/j.0105-2896.2005.00286.x.

    Article  CAS  PubMed  Google Scholar 

  4. Moura, F.A., K.Q. de Andrade, J.C.F. Dos Santos, O.R.P. Araújo, and M.O.F. Goulart. 2015. Antioxidant therapy for treatment of inflammatory bowel disease: does it work? Redox Biology 6: 617–639. https://doi.org/10.1016/j.redox.2015.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Damião, Aomc, M.F.C. de Azevedo, A.S. Carlos, M.Y. Wada, T.V.M. Silva, and F.C. Feitosa. 2019. Conventional therapy for moderate to severe inflammatory bowel disease: a systematic literature review. World Journal of Gastroenterology 25 (9): 1142–1157. https://doi.org/10.3748/wjg.v25.i9.1142.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, M., Y. Zhao, N. Wu, Y. Yao, M. Xu, H. Du, and Y. Tu. 2018. The anti-inflammatory activity of peptides from simulated gastrointestinal digestion of preserved egg white in DSS-induced mouse colitis. Food & Function 9 (12): 6444–6454. https://doi.org/10.1039/c8fo01939h.

    Article  CAS  Google Scholar 

  7. Funakoshi, T., K. Yamashita, N. Ichikawa, M. Fukai, T. Suzuki, R. Goto, T. Oura, N. Kobayashi, T. Katsurada, S. Ichihara, M. Ozaki, K. Umezawa, and S. Todo. 2012. A novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin, ameliorates inflammatory colonic injury in mice. Journal of Crohn's & Colitis 6 (2): 215–225. https://doi.org/10.1016/j.crohns.2011.08.011.

    Article  Google Scholar 

  8. Zhang, H., Y. Dai, Y. Liu, T. Wu, J. Li, X. Wang, and W. Wang. 2018. Helicobacter pylori colonization protects against chronic experimental colitis by regulating Th17/Treg balance. Inflammatory Bowel Diseases 24 (7): 1481–1492. https://doi.org/10.1093/ibd/izy107.

    Article  PubMed  Google Scholar 

  9. Guan, Q., and J. Zhang. 2017. Recent advances: the imbalance of cytokines in the pathogenesis of inflammatory bowel disease. Mediators of Inflammation 2017: 4810258. https://doi.org/10.1155/2017/4810258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neurath, M.F. 2014. Cytokines in inflammatory bowel disease. Nature Reviews. Immunology 14 (5): 329–342. https://doi.org/10.1038/nri3661.

    Article  CAS  PubMed  Google Scholar 

  11. Xi, M., X. Wang, J. Ge, and D. Yin. 2016. N′-[3-[benzyloxy]benzylidene]-3,4,5-trihydroxybenzohydrazide (1) protects mice against colitis induced by dextran sulfate sodium through inhibiting NF-κB/IL-6/STAT3 pathway. Biochemical and Biophysical Research Communications 477 (2): 290–296. https://doi.org/10.1016/j.bbrc.2016.06.059.

    Article  CAS  PubMed  Google Scholar 

  12. Medicherla, K., B.D. Sahu, M. Kuncha, J.M. Kumar, G. Sudhakar, and R. Sistla. 2015. Oral administration of geraniol ameliorates acute experimental murine colitis by inhibiting pro-inflammatory cytokines and NF-κB signaling. Food & Function 6 (9): 2984–2995. https://doi.org/10.1039/c5fo00405e.

    Article  CAS  Google Scholar 

  13. Khan, H., A. Sureda, T. Belwal, S. Cetinkaya, I. Suntar, S. Tejada, H.P. Devkota, H. Ullah, and M. Aschner. 2019. Polyphenols in the treatment of autoimmune diseases. Autoimmunity Reviews 18 (7): 647–657. https://doi.org/10.1016/j.autrev.2019.05.001.

    Article  CAS  PubMed  Google Scholar 

  14. Park, M.H., and J.T. Hong. 2016. Roles of NF-kappaB in cancer and inflammatory diseases and their therapeutic approaches. Cells 5 (2). https://doi.org/10.3390/cells5020015.

  15. Wu, H., H. Fan, Z. Shou, M. Xu, Q. Chen, C. Ai, Y. Dong, Y. Liu, Z. Nan, Y. Wang, T. Yu, and X. Liu. 2019. Extracellular vesicles containing miR-146a attenuate experimental colitis by targeting TRAF6 and IRAK1. International Immunopharmacology 68: 204–212. https://doi.org/10.1016/j.intimp.2018.12.043.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, H., J. Gu, X. Hou, J. Chen, N. Yang, Y. Liu, G. Wang, M. du, H. Qiu, Y. Luo, Z. Jiang, and L. Feng. 2017. Anti-inflammatory effect of miltirone on inflammatory bowel disease via TLR4/NF-κB/IQGAP2 signaling pathway. Biomedicine & Pharmacotherapy 85: 531–540. https://doi.org/10.1016/j.biopha.2016.11.061.

    Article  CAS  Google Scholar 

  17. Pandurangan, A.K., S. Ismail, Z. Saadatdoust, and N.M. Esa. 2015. Allicin alleviates dextran sodium sulfate- (DSS-) induced ulcerative colitis in BALB/c mice. Oxidative Medicine and Cellular Longevity 2015: 605208. https://doi.org/10.1155/2015/605208.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akanda, M.R., H.H. Nam, W. Tian, A. Islam, B.K. Choo, and B.Y. Park. 2018. Regulation of JAK2/STAT3 and NF-kappaB signal transduction pathways; Veronica polita alleviates dextran sulfate sodium-induced murine colitis. Biomedicine & Pharmacotherapy 100: 296–303. https://doi.org/10.1016/j.biopha.2018.01.168.

    Article  CAS  Google Scholar 

  19. Atreya, R., and M.F. Neurath. 2008. Signaling molecules: the pathogenic role of the IL-6/STAT-3 trans signaling pathway in intestinal inflammation and in colonic cancer. Current Drug Targets 9 (5): 369–374. https://doi.org/10.2174/138945008784221116.

    Article  CAS  PubMed  Google Scholar 

  20. Li, Z.W., B. Sun, T. Gong, S. Guo, J. Zhang, J. Wang, A. Sugawara, et al. 2019. GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology 156 (8): 2297–2312. https://doi.org/10.1053/j.gastro.2019.02.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, Y., J. Zhao, Y. Zhao, S. Zong, Y. Tian, S. Chen, M. Li, H. Liu, Q. Zhang, X. Jing, B. Sun, H. Wang, T. Sun, and C. Yang. 2019. Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer. Journal of Cellular and Molecular Medicine 23 (2): 750–760. https://doi.org/10.1111/jcmm.13897.

    Article  CAS  PubMed  Google Scholar 

  22. Domokos, D., E. Ducza, and R. Gaspar. 2019. RhoA and rho-kinase inhibitors modulate cervical resistance: the possible role of RhoA/rho-kinase signalling pathway in cervical ripening and contractility. European Journal of Pharmacology 843: 27–33. https://doi.org/10.1016/j.ejphar.2018.11.017.

    Article  CAS  PubMed  Google Scholar 

  23. Yang, W., G. Zhou, T. Yu, L. Chen, L. Yu, Y. Guo, Y. Cong, and Z. Liu. 2018. Critical role of ROCK2 activity in facilitating mucosal CD4(+) T cell activation in inflammatory bowel disease. Journal of Autoimmunity 89: 125–138. https://doi.org/10.1016/j.jaut.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y., Y. Lu, J. Chai, M. Sun, X. Hu, W. He, M. Ge, and C. Xie. 2017. Y-27632, a rho-associated protein kinase inhibitor, inhibits systemic lupus erythematosus. Biomedicine & Pharmacotherapy 88: 359–366. https://doi.org/10.1016/j.biopha.2017.01.069.

    Article  CAS  Google Scholar 

  25. Rozo, C., Y. Chinenov, R.K. Maharaj, S. Gupta, L. Leuenberger, K.A. Kirou, V.P. Bykerk, S.M. Goodman, J.E. Salmon, and A.B. Pernis. 2017. Targeting the RhoA-ROCK pathway to reverse T-cell dysfunction in SLE. Annals of the Rheumatic Diseases 76 (4): 740–747. https://doi.org/10.1136/annrheumdis-2016-209850.

    Article  CAS  PubMed  Google Scholar 

  26. Zou, Y., L. Ma, Y. Zhao, S. Zhang, C. Zhou, and Y. Cai. 2018. Inhibition of rho kinase protects against colitis in mice by attenuating intestinal epithelial barrier dysfunction via MLC and the NF-κB pathway. International Journal of Molecular Medicine 41 (1): 430–438. https://doi.org/10.3892/ijmm.2017.3197.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, Y., Z. Shou, H. Fan, M. Xu, Q. Chen, Q. Tang, X. Liu, H. Wu, M. Zhang, T. Yu, S. Deng, and Y. Liu. 2019. Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Bioscience Reports 39 (7). https://doi.org/10.1042/bsr20182297.

  28. Shi, L., Y. Dai, B. Jia, Y. Han, Y. Guo, T. Xie, J. Liu, X. Tan, P. Ding, and J. Li. 2019. The inhibitory effects of Qingchang Wenzhong granule on the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium-induced colitis. Journal of Cellular Biochemistry 120 (6): 9979–9991. https://doi.org/10.1002/jcb.28280.

    Article  CAS  PubMed  Google Scholar 

  29. Liu, D., X. Huo, L. Gao, J. Zhang, H. Ni, and L. Cao. 2018. NF-kappaB and Nrf2 pathways contribute to the protective effect of Licochalcone a on dextran sulphate sodium-induced ulcerative colitis in mice. Biomedicine & Pharmacotherapy 102: 922–929. https://doi.org/10.1016/j.biopha.2018.03.130.

    Article  CAS  Google Scholar 

  30. Jin, B.R., K.S. Chung, S.Y. Cheon, M. Lee, S. Hwang, S. Noh Hwang, K.J. Rhee, and H.J. An. 2017. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-kappaB and STAT3 activation. Scientific Reports 7: 46252. https://doi.org/10.1038/srep46252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, T., N. Shi, and A. Afzali. 2019. Chemopreventive effects of strawberry and black raspberry on colorectal cancer in inflammatory bowel disease. Nutrients 11 (6). https://doi.org/10.3390/nu11061261.

  32. Tao, J.H., J.A. Duan, W. Zhang, S. Jiang, J.M. Guo, and D.D. Wei. 2018. Polysaccharides from Chrysanthemum morifolium Ramat ameliorate colitis rats via regulation of the metabolic profiling and NF-kappa B/TLR4 and IL-6/JAK2/STAT3 signaling pathways. Frontiers in Pharmacology 9: 746. https://doi.org/10.3389/fphar.2018.00746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pandurangan, A.K., N. Mohebali, N.M. Esa, C.Y. Looi, S. Ismail, and Z. Saadatdoust. 2015. Gallic acid suppresses inflammation in dextran sodium sulfate-induced colitis in mice: possible mechanisms. International Immunopharmacology 28 (2): 1034–1043. https://doi.org/10.1016/j.intimp.2015.08.019.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was funded by the National Natural Science Foundation of China (no. 81774093 and no. 81573784).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: Yifan Wang, Meng Xu, and Qianyun Chen; data acquisition: Yifan Wang and Yujin Liu; Yifan Wang and Yujin Liu performed most of the experiments; Yifan Wang, Xueyun Duan, Qing Tang, Xingxing Liu, and Heng Fan wrote the manuscript.

Corresponding author

Correspondence to Heng Fan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Duan, X., Liu, X. et al. Rho kinase Blockade Ameliorates DSS-Induced Ulcerative Colitis in Mice Through Dual Inhibition of the NF-κB and IL-6/STAT3 Pathways. Inflammation 43, 857–867 (2020). https://doi.org/10.1007/s10753-019-01171-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-019-01171-2

KEY WORDS

Navigation