Skip to main content

Advertisement

Log in

Plantamajoside Inhibits Lipopolysaccharide-Induced MUC5AC Expression and Inflammation through Suppressing the PI3K/Akt and NF-κB Signaling Pathways in Human Airway Epithelial Cells

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

It has been reported that plantamajoside (PMS), a major natural compound isolated from Plantago asiatica, has anti-inflammatory activities. However, the effect of PMS on respiratory inflammatory diseases has not yet been studied. The present study aimed to evaluate the effect of PMS on lipopolysaccharide (LPS)-induced airway inflammation and the underlying mechanism. The results showed that PMS did not affect the cell viability of 16-HBE cells. PMS (20 and 40 μg/ml) decreased the expression levels of MUC5AC, IL-6, and IL-1β, which were induced by LPS treatment. PMS inhibited the LPS-induced phosphorylation of Akt and p65. In addition, inhibitors of the PI3K/Akt and NF-κB pathways attenuated the effect of LPS on 16-HBE cells. In conclusion, PMS inhibits LPS-induced MUC5AC expression and inflammation through suppressing the PI3K/Akt and NF-κB signaling pathways, indicating that PMS may be a potential therapy for the treatment of respiratory inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Samuelsen, A.B. 2000. The traditional uses, chemical constituents and biological activities of Plantago major L. a review. Journal of Ethnopharmacology 71: 1–21.

    Article  PubMed  CAS  Google Scholar 

  2. Huang, D.F., Y.F. Tang, S.P. Nie, Y. Wan, M.Y. Xie, and X.M. Xie. 2009. Effect of phenylethanoid glycosides and polysaccharides from the seed of Plantago asiatica L. on the maturation of murine bone marrow-derived dendritic cells. European Journal of Pharmacology 620: 105–111.

    Article  PubMed  CAS  Google Scholar 

  3. Wu, H., G. Zhao, K. Jiang, X. Chen, Z. Zhu, C. Qiu, C. Li, and G. Deng. 2016. Plantamajoside ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation. International Immunopharmacology 35: 315–322.

    Article  PubMed  CAS  Google Scholar 

  4. Pei, S., X. Yang, H. Wang, H. Zhang, B. Zhou, D. Zhang, and D. Lin. 2015. Plantamajoside, a potential anti-tumor herbal medicine inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of matrix metalloproteinase-9 and -2. BMC Cancer 15 (965).

  5. Katial, R.K., G.W. Bensch, W.W. Busse, B.E. Chipps, J.L. Denson, A.N. Gerber, J.S. Jacobs, M. Kraft, R.J. Martin, P. Nair, and M.E. Wechsler. 2017. Changing paradigms in the treatment of severe asthma: the role of biologic therapies. The Journal of Allergy and Clinical Immunology. In Practice 5: S1–S14.

    Article  PubMed  Google Scholar 

  6. Perng, D.W., and P.K. Chen. 2017. The relationship between airway inflammation and exacerbation in chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul) 80: 325–335.

    Article  Google Scholar 

  7. Eapen, M.S., S. Myers, E.H. Walters, and S.S. Sohal. 2017. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Review of Respiratory Medicine 11: 827–839.

    Article  PubMed  CAS  Google Scholar 

  8. Malaviya, R., J.D. Laskin, and D.L. Laskin. 2017. Anti-TNFα therapy in inflammatory lung diseases. Pharmacology & Therapeutics 180: 90–98.

    Article  CAS  Google Scholar 

  9. Dong, S.J., Y.Q. Zhong, W.T. Lu, G.H. Li, H.L. Jiang, and B. Mao. 2015. Baicalin inhibits lipopolysaccharide-induced inflammation through signaling NF-κB pathway in HBE16 airway epithelial cells. Inflammation 38: 1493–1501.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, I.T., and C.M. Yang. 2013. Inflammatory signalings involved in airway and pulmonary diseases. Mediators of Inflammation 2013 (791231).

  11. Medina-Tato, D.A., S.G. Ward, and M.L. Watson. 2007. Phosphoinositide 3-kinase signalling in lung disease: leucocytes and beyond. Immunology 121: 448–461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lee, K.S., H.K. Lee, J.S. Hayflick, Y.C. Lee, and K.D. Puri. 2006. Inhibition of phosphoinositide 3-kinase delta attenuates allergic airway inflammation and hyperresponsiveness in murine asthma model. The FASEB Journal 20: 455–465.

    Article  PubMed  CAS  Google Scholar 

  13. Song, K.S., J.H. Yoon, K.S. Kim, and D.W. Ahn. 2012. c-Ets1 inhibits the interaction of NF-κB and CREB, and downregulates IL-1β-induced MUC5AC overproduction during airway inflammation. Mucosal Immunology 5: 207–215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Solanki, P., A. Aminoshariae, G. Jin, T.A. Montagnese, and A. Mickel. 2013. The effect of docosahexaenoic acid (DHA) on expression of IL-1ss, IL-6, IL-8, and TNF-α in normal and lipopolysaccharide (LPS)-stimulated macrophages. Quintessence International 44: 393.

    PubMed  Google Scholar 

  15. Schonknecht, K., H. Krauss, J. Jambor, and A.M. Fal. 2016. Treatment of cough in respiratory tract infections—the effect of combining the natural active compounds with thymol. Wiadomości Lekarskie 69: 791–798.

    PubMed  Google Scholar 

  16. Ayrle, H., M. Mevissen, M. Kaske, H. Nathues, N. Gruetzner, M. Melzig, and M. Walkenhorst. 2016. Medicinal plants-prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review. BMC Veterinary Research 12 (89).

  17. Komoda, Y., H. Chujo, S. Ishihara, and M. Uchida. 1989. HPLC quantitative analysis of plantaginin in Shazenso (Plantago asiatica L.) extracts and isolation of plantamajoside. Tokyo Ika Shika Daigaku Iyo Kizai Kenkyusho Hokoku 23: 81–85.

    PubMed  CAS  Google Scholar 

  18. Son, W.R., M.H. Nam, C.O. Hong, Y. Kim, and K.W. Lee. 2017. Plantamajoside from Plantago asiatica modulates human umbilical vein endothelial cell dysfunction by glyceraldehyde-induced AGEs via MAPK/NF-κB. BMC Complementary and Alternative Medicine 17 (66).

  19. De Dooy, J.J., L.M. Mahieu, and H.P. Van Bever. 2001. The role of inflammation in the development of chronic lung disease in neonates. European Journal of Pediatrics 160: 457–463.

    Article  PubMed  Google Scholar 

  20. Entrican, G., S. Wattegedera, M. Rocchi, D.C. Fleming, R.W. Kelly, G. Wathne, V. Magdalenic, and S.E. Howie. 2004. Induction of inflammatory host immune responses by organisms belonging to the genera Chlamydia/Chlamydophila. Veterinary Immunology and Immunopathology 100: 179–186.

    Article  PubMed  CAS  Google Scholar 

  21. Na, H.G., C.H. Bae, Y.S. Choi, S.Y. Song, and Y.D. Kim. 2016. Spleen tyrosine kinase induces MUC5AC expression in human airway epithelial cell. American Journal of Rhinology & Allergy 30: 89–93.

    Article  Google Scholar 

  22. Haegens, A., T.F. Barrett, J. Gell, A. Shukla, M. Macpherson, P. Vacek, M.E. Poynter, K.J. Butnor, Y.M. Janssen-Heininger, C. Steele, and B.T. Mossman. 2007. Airway epithelial NF-κB activation modulates asbestos-induced inflammation and mucin production in vivo. Journal of Immunology 178: 1800–1808.

    Article  CAS  Google Scholar 

  23. Kim, H.J., S.H. Park, S.Y. Park, U.Y. Moon, B.D. Lee, S.H. Yoon, J.G. Lee, S.J. Baek, and J.H. Yoon. 2008. Epigallocatechin-3-gallate inhibits interleukin-1β-induced MUC5AC gene expression and MUC5AC secretion in normal human nasal epithelial cells. The Journal of Nutritional Biochemistry 19: 536–544.

    Article  PubMed  CAS  Google Scholar 

  24. Kim, C.H., K.S. Song, J.S. Koo, H.U. Kim, J.Y. Cho, H.J. Kim, and J.H. Yoon. 2002. IL-13 suppresses MUC5AC gene expression and mucin secretion in nasal epithelial cells. Acta Oto-Laryngologica 122: 638–643.

    Article  PubMed  CAS  Google Scholar 

  25. Choi, Y.H., G.Y. Jin, L.C. Li, and G.H. Yan. 2013. Inhibition of protein kinase C delta attenuates allergic airway inflammation through suppression of PI3K/Akt/mTOR/HIF-1α/VEGF pathway. PLoS One 8: e81773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen, L., J. Chen, C.M. Xie, Y. Zhao, X. Wang, and Y.H. Zhang. 2015. Maternal disononyl phthalate exposure activates allergic airway inflammation via stimulating the phosphoinositide 3-kinase/Akt pathway in rat pups. Biomedical and Environmental Sciences 28: 190–198.

    PubMed  Google Scholar 

  27. Mishra, V., V. Baranwal, R.K. Mishra, S. Sharma, B. Paul, and A.C. Pandey. 2016. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-κB pathway in murine model of asthma. Biomaterials 92: 90–102.

    Article  PubMed  CAS  Google Scholar 

  28. Bui, T.T., C.H. Piao, S.M. Kim, C.H. Song, H.S. Shin, C.H. Lee, and O.H. Chai. 2017. Citrus tachibana leaves ethanol extract alleviates airway inflammation by the modulation of Th1/Th2 imbalance via inhibiting NF-κB signaling and histamine secretion in a mouse model of allergic asthma. Journal of Medicinal Food 20: 676–684.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaonan Ma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Ma, W. Plantamajoside Inhibits Lipopolysaccharide-Induced MUC5AC Expression and Inflammation through Suppressing the PI3K/Akt and NF-κB Signaling Pathways in Human Airway Epithelial Cells. Inflammation 41, 795–802 (2018). https://doi.org/10.1007/s10753-018-0733-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0733-7

Key Words

Navigation