Skip to main content
Log in

Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors, which mediate glucose and lipid homeostasis by regulating the expression of a large number of transcription factors. Sphingomyelin synthase (SMS) is a key enzyme in the synthesis of sphingomyelin (SM), and its expression and activity have been reported to be associated with atherosclerosis (AS). Although there have been many functional PPAR and SMS studies on atherosclerosis in recent years, few have investigated the correlation between the activation of PPARδ and the activity of SMS. In his study, macrophage-induced foam cells were utilized to model important pathological changes that occur in AS. The influence of PPARδ agonism by GW501516 on SMS and its product molecule SM were measured. Results indicated that the activation of PPARδ was correlated in a positive manner with the activity of SMS2, and the content of SM was dose dependently increased by GW501516. Together, this study represents the first to suggest that PPARδ activation may be a potential risk of AS through enhancing activity of SMS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ajith, T.A., and T.G. Jayakumar. 2016. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease. Clinical and Experimental Pharmacology & Physiology. doi:10.1111/1440-1681.12579.

    Google Scholar 

  2. Auwerx, J.H., A. Chait, and S.S. Deeb. 1989. Regulation of the low density lipoprotein receptor and hydroxymethylglutaryl coenzyme A reductase genes by protein kinase C and a putative negative regulatory protein. Proceedings of the National Academy of Sciences of the United States of America 86(4): 1133–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Auwerx, J.H., S. Deeb, J.D. Brunzell, R. Peng, and A. Chait. 1988. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry 27(8): 2651–2655.

    Article  CAS  PubMed  Google Scholar 

  4. Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37(8): 911–917. doi:10.1139/o59-099.

    Article  CAS  PubMed  Google Scholar 

  5. Bojic, L.A., A.C. Burke, S.S. Chhoker, D.E. Telford, B.G. Sutherland, J.Y. Edwards, C.G. Sawyez, et al. 2014. Peroxisome proliferator-activated receptor delta agonist GW1516 attenuates diet-induced aortic inflammation, insulin resistance, and atherosclerosis in low-density lipoprotein receptor knockout mice. Arteriosclerosis, Thrombosis, and Vascular Biology 34(1): 52–60. doi:10.1161/ATVBAHA.113.301830.

    Article  CAS  PubMed  Google Scholar 

  6. Briand, F., S.U. Naik, I. Fuki, J.S. Millar, C. Macphee, M. Walker, J. Billheimer, G. Rothblat, and D.J. Rader. 2009. Both the peroxisome proliferator-activated receptor delta agonist, GW0742, and ezetimibe promote reverse cholesterol transport in mice by reducing intestinal reabsorption of HDL-derived cholesterol. Clinical and Translational Science 2(2): 127–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheang, W.S., X.Y. Tian, W.T. Wong, and Y. Huang. 2015. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. British Journal of Pharmacology 172(23): 5512–5522. doi:10.1111/bph.13029.

    Article  CAS  PubMed  Google Scholar 

  8. Choi, Y.J., B.K. Roberts, X. Wang, J.C. Geaney, S. Naim, K. Wojnoonski, D.B. Karpf, and R.M. Krauss. 2012. Effects of the PPAR-delta agonist MBX-8025 on atherogenic dyslipidemia. Atherosclerosis 220(2): 470–476. doi:10.1016/j.atherosclerosis.2011.10.029.

    Article  CAS  PubMed  Google Scholar 

  9. Ding, T., Z. Li, T. Hailemariam, S. Mukherjee, F.R. Maxfield, M.P. Wu, and X.C. Jiang. 2008. SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. Journal of Lipid Research 49(2): 376–385. doi:10.1194/jlr.M700401-JLR200.

    Article  CAS  PubMed  Google Scholar 

  10. Dong, J., J. Liu, B. Lou, Z. Li, X. Ye, M. Wu, and X.C. Jiang. 2006. Adenovirus-mediated overexpression of sphingomyelin synthases 1 and 2 increases the atherogenic potential in mice. Journal of Lipid Research 47(6): 1307–1314. doi:10.1194/jlr.M600040-JLR200.

    Article  CAS  PubMed  Google Scholar 

  11. Graham, T.L., C. Mookherjee, K.E. Suckling, C.N. Palmer, and L. Patel. 2005. The PPARdelta agonist GW0742X reduces atherosclerosis in LDLR(−/−) mice. Atherosclerosis 181(1): 29–37. doi:10.1016/j.atherosclerosis.2004.12.028.

    Article  CAS  PubMed  Google Scholar 

  12. Guyton, J.R., and K.F. Klemp. 1996. Development of the lipid-rich core in human atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 16(1): 4–11.

    Article  CAS  PubMed  Google Scholar 

  13. Hailemariam, T.K., C. Huan, J. Liu, Z. Li, C. Roman, M. Kalbfeisch, H.H. Bui, et al. 2008. Sphingomyelin synthase 2 deficiency attenuates NFkappaB activation. Arteriosclerosis, Thrombosis, and Vascular Biology 28(8): 1519–1526. doi:10.1161/ATVBAHA.108.168682.

    Article  CAS  PubMed  Google Scholar 

  14. Hoff, H.F., and R.E. Morton. 1985. Lipoproteins containing apo B extracted from human aortas. Structure and function. Annals of the New York Academy of Sciences 454: 183–194.

    Article  CAS  PubMed  Google Scholar 

  15. Hojjati, M.R., and X.C. Jiang. 2006. Rapid, specific, and sensitive measurements of plasma sphingomyelin and phosphatidylcholine. Journal of Lipid Research 47(3): 673–676. doi:10.1194/jlr.D500040-JLR200.

    Article  CAS  PubMed  Google Scholar 

  16. Hojjati, M.R., Z. Li, H. Zhou, S. Tang, C. Huan, E. Ooi, S. Lu, and X.C. Jiang. 2005. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. The Journal of Biological Chemistry 280(11): 10284–10289. doi:10.1074/jbc.M412348200.

    Article  CAS  PubMed  Google Scholar 

  17. Huitema, K., J. van den Dikkenberg, J.F. Brouwers, and J.C. Holthuis. 2004. Identification of a family of animal sphingomyelin synthases. The EMBO Journal 23(1): 33–44. doi:10.1038/sj.emboj.7600034.

    Article  CAS  PubMed  Google Scholar 

  18. Jeong, Ts, S.L. Schissel, I. Tabas, H.J. Pownall, A.R. Tall, and X. Jiang. 1998. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. The Journal of Clinical Investigation 101(4): 905–912. doi:10.1172/JCI870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang, X.C., F. Paultre, T.A. Pearson, R.G. Reed, C.K. Francis, M. Lin, L. Berglund, and A.R. Tall. 2000. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology 20(12): 2614–2618.

    Article  CAS  PubMed  Google Scholar 

  20. Kersten, S., B. Desvergne, and W. Wahli. 2000. Roles of PPARs in health and disease. Nature 405(6785): 421–424. doi:10.1038/35013000.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, C.H., P. Olson, A. Hevener, I. Mehl, L.W. Chong, J.M. Olefsky, F.J. Gonzalez, et al. 2006. PPARdelta regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America 103(9): 3444–3449. doi:10.1073/pnas.0511253103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee, S.S., T. Pineau, J. Drago, E.J. Lee, J.W. Owens, D.L. Kroetz, P.M. Fernandez-Salguero, H. Westphal, and F.J. Gonzalez. 1995. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Molecular and Cellular Biology 15(6): 3012–3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, G., C. Chen, S.D. Laing, C. Ballard, K.C. Biju, R.L. Reddick, R.A. Clark, and S. Li. 2016. Hematopoietic knockdown of PPARdelta reduces atherosclerosis in LDLR−/− mice. Gene Therapy 23(1): 78–85. doi:10.1038/gt.2015.78.

    Article  CAS  PubMed  Google Scholar 

  24. Li, Y.L., X.Y. Qi, H. Jiang, X.D. Deng, Y.P. Dong, T.B. Ding, L. Zhou, et al. 2015. Discovery, synthesis and biological evaluation of 2-(4-(N-phenethylsulfamoyl)phenoxy)acetamides (SAPAs) as novel sphingomyelin synthase 1 inhibitors. Bioorganic and Medicinal Chemistry 23(18): 6173–6184. doi:10.1016/j.bmc.2015.07.060.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Z., T.K. Hailemariam, H. Zhou, Y. Li, D.C. Duckworth, D.A. Peake, Y. Zhang, M.S. Kuo, G. Cao, and X.C. Jiang. 2007. Inhibition of sphingomyelin synthase (SMS) affects intracellular sphingomyelin accumulation and plasma membrane lipid organization. Biochimica et Biophysica Acta 1771(9): 1186–1194. doi:10.1016/j.bbalip.2007.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, J., H. Zhang, Z. Li, T.K. Hailemariam, M. Chakraborty, K. Jiang, D. Qiu, et al. 2009. Sphingomyelin synthase 2 is one of the determinants for plasma and liver sphingomyelin levels in mice. Arteriosclerosis, Thrombosis, and Vascular Biology 29(6): 850–856. doi:10.1161/ATVBAHA.109.185223.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Merrill Jr., A.H., and D.D. Jones. 1990. An update of the enzymology and regulation of sphingomyelin metabolism. Biochimica et Biophysica Acta 1044(1): 1–12.

    Article  CAS  PubMed  Google Scholar 

  28. Miyaji, M., Z.X. Jin, S. Yamaoka, R. Amakawa, S. Fukuhara, S.B. Sato, T. Kobayashi, et al. 2005. Role of membrane sphingomyelin and ceramide in platform formation for Fas-mediated apoptosis. The Journal of Experimental Medicine 202(2): 249–259. doi:10.1084/jem.20041685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Motojima, K., P. Passilly, J.M. Peters, F.J. Gonzalez, and N. Latruffe. 1998. Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor alpha and gamma activators in a tissue- and inducer-specific manner. The Journal of Biological Chemistry 273(27): 16710–16714.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura, F., Y. Ishida, D. Sawada, N. Ashida, T. Sugawara, M. Sakai, T. Goto, T. Kawada, and S. Fujiwara. 2016. Fragmented lactic acid bacterial cells activate peroxisome proliferator-activated receptors and ameliorate dyslipidemia in obese mice. Journal of Agricultural and Food Chemistry 64(12): 2549–2559. doi:10.1021/acs.jafc.5b05827.

    Article  CAS  PubMed  Google Scholar 

  31. Naya, N., K. Fukao, A. Nakamura, T. Hamada, M. Sugimoto, M. Kojima, N. Yoshimura, et al. 2016. A selective peroxisome proliferator-activated receptor delta agonist PYPEP suppresses atherosclerosis in association with improvement of the serum lipoprotein profiles in human apolipoprotein B100 and cholesteryl ester transfer protein double transgenic mice. Metabolism 65(1): 16–25. doi:10.1016/j.metabol.2015.09.016.

    Article  CAS  PubMed  Google Scholar 

  32. Noel, C., Y.L. Marcel, and J. Davignon. 1972. Plasma phospholipids in the different types of primary hyperlipoproteinemia. The Journal of Laboratory and Clinical Medicine 79(4): 611–621.

    CAS  PubMed  Google Scholar 

  33. Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, et al. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98(9): 5306–5311. doi:10.1073/pnas.091021198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, T.S., R.L. Panek, S.B. Mueller, J.C. Hanselman, W.S. Rosebury, A.W. Robertson, E.K. Kindt, R. Homan, S.K. Karathanasis, and M.D. Rekhter. 2004. Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 110(22): 3465–3471. doi:10.1161/01.CIR.0000148370.60535.22.

    Article  CAS  PubMed  Google Scholar 

  35. Park, T.S., R.L. Panek, M.D. Rekhter, S.B. Mueller, W.S. Rosebury, A. Robertson, J.C. Hanselman, E. Kindt, R. Homan, and S.K. Karathanasis. 2006. Modulation of lipoprotein metabolism by inhibition of sphingomyelin synthesis in ApoE knockout mice. Atherosclerosis 189(2): 264–272. doi:10.1016/j.atherosclerosis.2005.12.029.

    Article  CAS  PubMed  Google Scholar 

  36. Peters, J.M., N. Hennuyer, B. Staels, J.C. Fruchart, C. Fievet, F.J. Gonzalez, and J. Auwerx. 1997. Alterations in lipoprotein metabolism in peroxisome proliferator-activated receptor alpha-deficient mice. The Journal of Biological Chemistry 272(43): 27307–27312.

    Article  CAS  PubMed  Google Scholar 

  37. Peters, J.M., S.S. Lee, W. Li, J.M. Ward, O. Gavrilova, C. Everett, M.L. Reitman, L.D. Hudson, and F.J. Gonzalez. 2000. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor beta(delta). Molecular and Cellular Biology 20(14): 5119–5128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodriguez, J.L., G.C. Ghiselli, D. Torreggiani, and C.R. Sirtori. 1976. Very low density lipoproteins in normal and cholesterol-fed rabbits: lipid and protein composition and metabolism. Part 1. Chemical composition of very low density lipoproteins in rabbits. Atherosclerosis 23(1): 73–83.

    Article  CAS  PubMed  Google Scholar 

  39. Spiegelman, B.M. 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47(4): 507–514.

    Article  CAS  PubMed  Google Scholar 

  40. Sprecher, D.L., C. Massien, G. Pearce, A.N. Billin, I. Perlstein, T.M. Willson, D.G. Hassall, et al. 2007. Triglyceride: high-density lipoprotein cholesterol effects in healthy subjects administered a peroxisome proliferator activated receptor delta agonist. Arteriosclerosis, Thrombosis, and Vascular Biology 27(2): 359–365. doi:10.1161/01.ATV.0000252790.70572.0c.

    Article  CAS  PubMed  Google Scholar 

  41. Tafesse, F.G., P. Ternes, and J.C. Holthuis. 2006. The multigenic sphingomyelin synthase family. The Journal of Biological Chemistry 281(40): 29421–29425. doi:10.1074/jbc.R600021200.

    Article  CAS  PubMed  Google Scholar 

  42. Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, et al. 2008. PPARdelta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105(11): 4277–4282. doi:10.1073/pnas.0708647105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toral, M., M. Gomez-Guzman, R. Jimenez, M. Romero, M.J. Zarzuelo, M.P. Utrilla, C. Hermenegildo, et al. 2015. Chronic peroxisome proliferator-activated receptor beta/delta agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. Journal of Hypertension 33(9): 1831–1844. doi:10.1097/HJH.0000000000000634.

    Article  CAS  PubMed  Google Scholar 

  44. Van der Luit, A.H., M. Budde, S. Zerp, W. Caan, J.B. Klarenbeek, M. Verheij, and W.J. Van Blitterswijk. 2007. Resistance to alkyl-lysophospholipid-induced apoptosis due to downregulated sphingomyelin synthase 1 expression with consequent sphingomyelin- and cholesterol-deficiency in lipid rafts. The Biochemical Journal 401(2): 541–549. doi:10.1042/BJ20061178.

    Article  CAS  PubMed  Google Scholar 

  45. Wallace, J.M., M. Schwarz, P. Coward, J. Houze, J.K. Sawyer, K.L. Kelley, A. Chai, and L.L. Rudel. 2005. Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys. Journal of Lipid Research 46(5): 1009–1016. doi:10.1194/jlr.M500002-JLR200.

    Article  CAS  PubMed  Google Scholar 

  46. Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113(2): 159–170.

    Article  CAS  PubMed  Google Scholar 

  47. Yan, N., T. Ding, J. Dong, Y. Li, and M. Wu. 2011. Sphingomyelin synthase overexpression increases cholesterol accumulation and decreases cholesterol secretion in liver cells. Lipids in Health and Disease 10: 46. doi:10.1186/1476-511X-10-46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of Hubei Province of China, No. 2014CFB617.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaogui Zhang.

Ethics declarations

Conflicts of Interest

The authors declare that they have no competing interests.

Additional information

Dongsheng Mou and Hua Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mou, D., Yang, H., Qu, C. et al. Pharmacological Activation of Peroxisome Proliferator-Activated Receptor {Delta} Increases Sphingomyelin Synthase Activity in THP-1 Macrophage-Derived Foam Cell. Inflammation 39, 1538–1546 (2016). https://doi.org/10.1007/s10753-016-0389-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0389-0

KEY WORDS

Navigation