Skip to main content
Log in

Enhanced p62 Is Responsible for Mitochondrial Pathway-Dependent Apoptosis and Interleukin-1β Production at the Early Phase by Monosodium Urate Crystals in Murine Macrophage

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

An Erratum to this article was published on 13 July 2016

Abstract

The aim of this study was to clarify the role of p62-dependent mitochondrial apoptosis in the initiation of monosodium urate (MSU) crystal-induced inflammation in macrophages. The induction of mitochondrial apoptosis in RAW 264.7 murine macrophages by MSU crystals was measured using western blotting and quantitative real-time polymerase chain reaction for Bax, caspase-3, caspase-9, or PARP1, and by flow cytometric analysis. Immunoprecipitation and western blotting was applied to detect ubiquitination of p62, TRAF6, and caspase-9. Mitochondrial apoptosis, reactive oxygen species (ROS) generation, and cell proliferation were assessed in cells transfected with p62 small interfering RNA (siRNA). Treatment of RAW 264.7 cells with MSU crystals induced activation of Bax, caspase-3, caspase-9, and PARP1 at the early phase, in addition to enhancing IL-1β expression, but these findings were attenuated at the late phase. MSU crystals induced ubiquitination of p62, followed by ubiquitination of TRAF6 and caspase-9, which were significantly reversed by ascorbic acid. RAW 264.7 cells transfected with p62 siRNA showed attenuated expression of Bax, caspase-3, caspase-9, and PARP1, decreased ROS and IL-1β production, and increased cell proliferation, compared to controls. The antioxidant ascorbic acid inhibited p62, caspase-9, and IL-1β expression increased by MSU crystals. p62 may be a crucial mediator for the mitochondrial apoptosis pathway in MSU crystal-induced inflammation, which is linked to the acute inflammatory response during the early phase of gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi, H.K., D.B. Mount, and A.M. Reginato. 2005. Pathogenesis of gout. Annals of Internal Medicine 143: 499–516.

    Article  CAS  PubMed  Google Scholar 

  2. Busso, N., and A. So. 2010. Mechanisms of inflammation in gout. Arthritis Research and Therapy 12: 206.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.

    Article  CAS  PubMed  Google Scholar 

  4. Mariathasan, S., D.S. Weiss, K. Newton, J. McBride, K. O’Rourke, M. Roose-Girma, W.P. Lee, Y. Weinrauch, D.M. Monack, and V.M. Dixit. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.

    Article  CAS  PubMed  Google Scholar 

  5. Dostert, C., V. Petrilli, R. Van Bruggen, C. Steele, B.T. Mossman, and J. Tschopp. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320: 674–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martinon, F., V. Pétrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440: 237–241.

    Article  CAS  PubMed  Google Scholar 

  7. Choe, J.Y., H.Y. Jung, K.Y. Park, and S.K. Kim. 2014. Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1β expression. Rheumatology (Oxford) 53: 1043–1053.

    Article  CAS  Google Scholar 

  8. Ferrari, D., C. Pizzirani, E. Adinolfi, R.M. Lemoli, A. Curti, M. Idzko, E. Panther, and F. Di Virgilio. 2006. The P2X7 receptor: a key player in IL-1 processing and release. Journal of Immunology 176: 3877–3883.

    Article  CAS  Google Scholar 

  9. Hornung, V., F. Bauernfeind, A. Halle, E.O. Samstad, H. Kono, K.L. Rock, K.A. Fitzgerald, and E. Latz. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9: 847–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.

    Article  CAS  PubMed  Google Scholar 

  11. Saxena, G., J. Chen, and A. Shalev. 2010. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein. Journal of Biological Chemistry 285: 3997–4005.

    Article  CAS  PubMed  Google Scholar 

  12. Shimada, K., T.R. Crother, J. Karlin, J. Dagvadorj, N. Chiba, S. Chen, V.K. Ramanujan, A.J. Wolf, L. Vergnes, D.M. Ojcius, A. Rentsendorj, M. Vargas, C. Guerrero, Y. Wang, K.A. Fitzgerald, D.M. Underhill, T. Town, and M. Arditi. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36: 401–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geetha, T., and M.W. Wooten. 2002. Structure and functional properties of the ubiquitin binding protein p62. FEBS Letters 512: 19–24.

    Article  CAS  PubMed  Google Scholar 

  14. Moscat, J., M.T. Diaz-Meco, and M.W. Wooten. 2007. Signal integration and diversification through the p62 scaffold protein. Trends in Biochemical Sciences 32: 95–100.

    Article  CAS  PubMed  Google Scholar 

  15. Jin, Z., Y. Li, R. Pitti, D. Lawrence, V.C. Pham, J.R. Lill, and A. Ashkenazi. 2009. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137: 721–735.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, S., K. Okamoto, C. Yu, and F.A. Sinicrope. 2013. p62/sequestosome-1 up-regulation promotes ABT-263-induced caspase-8 aggregation/activation on the autophagosome. Journal of Biological Chemistry 288: 33654–33666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo, N., and Z. Peng. 2013. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pacific Journal of Clinical Oncology 9: 6–11.

    Article  PubMed  Google Scholar 

  18. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

    Article  CAS  PubMed  Google Scholar 

  19. Martin, W.J., M. Walton, and J. Harper. 2009. Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis and Rheumatism 60: 281–289.

    Article  PubMed  Google Scholar 

  20. Savill, J.S., A.H. Wyllie, J.E. Henson, M.J. Walport, P.M. Henson, and C. Haslett. 1989. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. Journal of Clinical Investigation 83: 865–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fadok, V.A., D.L. Bratton, A. Konowal, P.W. Freed, J.Y. Westcott, and P.M. Henson. 1998. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β, PGE2, and PAF. Journal of Clinical Investigation 101: 890–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Steiger, S., and J.L. Harper. 2013. Neutrophil cannibalism triggers transforming growth factor β1 production and self regulation of neutrophil inflammatory function in monosodium urate monohydrate crystal induced inflammation in mice. Arthritis and Rheumatism 65: 815–823.

    Article  CAS  PubMed  Google Scholar 

  23. Wooten, M.W., T. Geetha, M.L. Seibenhener, J.R. Babu, M.T. Diaz-Meco, and J. Moscat. 2005. The p62 scaffold regulates nerve growth factor-induced NF-kB activation by influencing TRAF6 polyubiquitination. Journal of Biological Chemistry 280: 35625–35629.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y.B., J.L. Gong, T.Y. Xing, S.P. Zheng, and W. Ding. 2013. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death & Disease 4, e550.

    Article  CAS  Google Scholar 

  25. Fombonne, J., P.A. Bissey, C. Guix, R. Sadoul, C. Thibert, and P. Mehlen. 2012. Patched dependence receptor triggers apoptosis through ubiquitination of caspase-9. Proceedings of the National Academy of Sciences of the United States of America 109: 10510–10515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hao, Y., K. Sekine, A. Kawabata, H. Nakamura, T. Ishioka, H. Ohata, R. Katayama, C. Hashimoto, X. Zhang, T. Noda, T. Tsuruo, and M. Naito. 2004. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nature Cell Biology 6: 849–860.

    Article  CAS  PubMed  Google Scholar 

  27. Choe, J.Y., K.Y. Park, and S.K. Kim. 2015. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy. Apoptosis 20: 38–49.

    Article  CAS  PubMed  Google Scholar 

  28. Wedi, B., J. Straede, B. Wieland, and A. Kapp. 1999. Eosinophil apoptosis is mediated by stimulators of cellular oxidative metabolisms and inhibited by antioxidants: involvement of a thiol-sensitive redox regulation in eosinophil cell death. Blood 94: 2365–2373.

    CAS  PubMed  Google Scholar 

  29. Baeuerle, P.A., and T. Henkel. 1994. Function and activation of NF-kB in the immune system. Annual Review of Immunology 12: 141–179.

    Article  CAS  PubMed  Google Scholar 

  30. Beg, A.A., W.C. Sha, R.T. Bronson, S. Ghosh, and D. Baltimore. 1995. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kB. Nature 376: 167–170.

    Article  CAS  PubMed  Google Scholar 

  31. Beg, A.A., and D. Baltimore. 1996. An essential role for NF-kB in preventing TNF-α-induced cell death. Science 274: 782–784.

    Article  CAS  PubMed  Google Scholar 

  32. Bauernfeind, F.G., G. Horvath, A. Stutz, E.S. Alnemri, K. MacDonald, D. Speert, T. Fernandes-Alnemri, J. Wu, B.G. Monks, K.A. Fitzgerald, V. Hornung, and E. Latz. 2009. NF-kB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of Immunology 183: 787–791.

    Article  CAS  Google Scholar 

  33. Inokuchi, T., T. Ka, A. Yamamoto, Y. Moriwaki, S. Takahashi, Z. Tsutsumi, D. Tamada, and T. Yamamoto. 2008. Effects of ethanol on monosodium urate crystal-induced inflammation. Cytokine 42: 198–204.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Dongwon Pharmaceutical Research Grant of Daegu Medical Association (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Kyu Kim.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10753-016-0403-6.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(DOC 130 kb)

Supplementary Figure 2

(DOC 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Choe, JY. & Park, KY. Enhanced p62 Is Responsible for Mitochondrial Pathway-Dependent Apoptosis and Interleukin-1β Production at the Early Phase by Monosodium Urate Crystals in Murine Macrophage. Inflammation 39, 1603–1616 (2016). https://doi.org/10.1007/s10753-016-0387-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0387-2

KEY WORDS

Navigation