Skip to main content

Advertisement

Log in

Selenium Pretreatment for Mitigation of Ischemia/Reperfusion Injury in Cardiovascular Surgery: Influence on Acute Organ Damage and Inflammatory Response

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

Ischemia/reperfusion injury (IRI) contributes to morbidity and mortality after cardiovascular surgery requiring cardiopulmonary bypass (CPB) and deep hypothermic circulatory arrest (DHCA). Multi-organ damage is associated with substantial decreases of blood selenium (Se) levels in patients undergoing cardiac surgery with CPB. We compared the influence of a dietary surplus of Se and pretreatment with ebselen, a mimic of the selenoenzyme glutathione peroxidase, on IRI-induced tissue damage and inflammation. Male Wistar rats were fed either a Se-adequate diet containing 0.3 ppm Se or supplemented with 1 ppm Se (as sodium selenite) for 5 weeks. Two other groups of Se-adequate rats received intraperitoneal injection of ebselen (30 mg/kg) or DMSO (solvent control) before surgery. The animals were connected to a heart-lung-machine and underwent 45 min of global ischemia during circulatory arrest at 16 °C, followed by re-warming and reperfusion. Selenite and ebselen suppressed IRI-induced leukocytosis and the increase in plasma levels of tissue damage markers (AST, ALT, LDH, troponin) during surgery but did not prevent the induction of proinflammatory cytokines (IL-6, TNF-α). Both Se compounds affected phosphorylation and expression of proteins related to stress response and inflammation: Ebselen increased phosphorylation of STAT3 transcription factor in the heart and decreased phosphorylation of ERK1/2 MAP kinases in the lungs. Selenite decreased ERK1/2 phosphorylation and HSP-70 expression in the heart. Pretreatment with selenite or ebselen protected against acute IRI-induced tissue damage during CPB and DHCA. Potential implications of their different actions with regard to molecular stress markers on the recovery after surgery represent promising targets for further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

CPB:

Cardiopulmonary bypass

DHCA:

Deep hypothermic circulatory arrest

EFSA:

European food safety authority

ERK1/2:

Extracellular-regulated kinases-1/2

GPx:

Glutathione peroxidase

HO-1:

Heme oxygenase-1

HSP-70:

Heat shock protein-70

IL:

Interleukin

IRI:

Ischemia/reperfusion injury

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

NAC:

N-acetyl cysteine

ROS/RNS:

Reactive oxygen and nitrogen species

SIRS:

Systemic inflammatory response syndrome

STAT3:

Signal transducer and activator of transcription-3

TNF-α:

Tumor necrosis factor-α

REFERENCES

  1. Svyatets, M., K. Tolani, M. Zhang, G. Tulman, and J. Charchaflieh. 2010. Perioperative management of deep hypothermic circulatory arrest. Journal of Cardiothoracic and Vascular Anesthesia 24: 644–655.

    Article  PubMed  Google Scholar 

  2. Luehr, M., J. Bachet, F.W. Mohr, and C.D. Etz. 2014. Modern temperature management in aortic arch surgery: the dilemma of moderate hypothermia. European Journal of Cardio-Thoracic Surgery 45: 27–39.

    Article  PubMed  Google Scholar 

  3. Tsai, J.Y., W. Pan, S.A. Lemaire, P. Pisklak, V.V. Lee, A.W. Bracey, M.A. Elayda, O. Preventza, M.D. Price, C.D. Collard, and J.S. Coselli. 2013. Moderate hypothermia during aortic arch surgery is associated with reduced risk of early mortality. Journal of Thoracic and Cardiovascular Surgery 146: 662–667.

    Article  PubMed  Google Scholar 

  4. Hall, R. 2013. Identification of inflammatory mediators and their modulation by strategies for the management of the systemic inflammatory response during cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia 27: 983–1033.

    Article  PubMed  Google Scholar 

  5. Rayman, M.P. 2012. Selenium and human health. Lancet 379: 1256–1268.

    Article  CAS  PubMed  Google Scholar 

  6. Fairweather-Tait, S.J., Y. Bao, M.R. Broadley, R. Collings, D. Ford, J.E. Hesketh, and R. Hurst. 2011. Selenium in human health and disease. Antioxidants and Redox Signaling 14: 1337–1383.

    Article  CAS  PubMed  Google Scholar 

  7. Steinbrenner, H., and H. Sies. 2009. Protection against reactive oxygen species by selenoproteins. Biochimica et Biophysica Acta 1790: 1478–1485.

    Article  CAS  PubMed  Google Scholar 

  8. EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific opinion on dietary reference values for selenium. EFSA Journal. 12:3846, doi:10.2903/j.efsa.2014.3846 (2014)

  9. Huang, Z., A.H. Rose, and P.R. Hoffmann. 2012. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxidants and Redox Signaling 16: 705–743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gandhi, U.H., N. Kaushal, K.C. Ravindra, S. Hegde, S.M. Nelson, V. Narayan, H. Vunta, R.F. Paulson, and K.S. Prabhu. 2011. Selenoprotein-dependent up-regulation of hematopoietic prostaglandin D2 synthase in macrophages is mediated through the activation of peroxisome proliferator-activated receptor (PPAR) gamma. Journal of Biological Chemistry 286: 27471–27482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steinbrenner, H., S. Al-Quraishy, M.A. Dkhil, F. Wunderlich, and H. Sies. 2015. Dietary selenium in adjuvant therapy of viral and bacterial infections. Advances in Nutrition 6: 1–10.

    Article  Google Scholar 

  12. Stoppe, C., G. Schälte, R. Rossaint, M. Coburn, B. Graf, J. Spillner, G. Marx, and S. Rex. 2011. The intraoperative decrease of selenium is associated with the postoperative development of multiorgan dysfunction in cardiac surgical patients. Critical Care Medicine 39: 1879–1885.

    Article  CAS  PubMed  Google Scholar 

  13. Bar-Or, D., and R.E. Garrett. 2011. Is low plasma selenium concentration a true reflection of selenium deficiency and redox status in critically ill patients? Critical Care Medicine 39: 2000–2001.

    Article  PubMed  Google Scholar 

  14. Angstwurm, M.W., L. Engelmann, T. Zimmermann, C. Lehmann, C.H. Spes, P. Abel, R. Strauss, A. Meier-Hellmann, R. Insel, J. Radke, J. Schüttler, and R. Gärtner. 2007. Selenium in intensive care (SIC): results of a prospective randomized, placebo-controlled, multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis, and septic shock. Critical Care Medicine 35: 118–126.

    Article  CAS  PubMed  Google Scholar 

  15. Sakr, Y., V.P. Maia, C. Santos, J. Stracke, M. Zeidan, O. Bayer, and K. Reinhart. 2014. Adjuvant selenium supplementation in the form of sodium selenite in postoperative critically ill patients with severe sepsis. Critical Care 18: R68. doi:10.1186/cc13825.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schomburg, L. 2014. Selenium in sepsis—substitution, supplementation or pro-oxidative bolus? Critical Care 18: 444. doi:10.1186/cc13963.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Forceville, X. 2013. The effect of selenium therapy on mortality in patients with sepsis syndrome: simple selenium supplementation or real (5 H2O)·Na2SeO3 pharmacological effect? Critical Care Medicine 41: 1591–1592.

    Article  PubMed  Google Scholar 

  18. Guo, F., N. Monsefi, A. Moritz, and A. Beiras-Fernandez. 2012. Selenium and cardiovascular surgery: an overview. Current Drug Safety 7: 321–327.

    Article  CAS  PubMed  Google Scholar 

  19. Schewe, T. 1995. Molecular actions of ebselen—an antiinflammatory antioxidant. General Pharmacology 26: 1153–1169.

    Article  CAS  PubMed  Google Scholar 

  20. Parnham, M.J., and H. Sies. 2013. The early research and development of ebselen. Biochemical Pharmacology 86: 1248–1253.

    Article  CAS  PubMed  Google Scholar 

  21. Wang, X., J.W. Yun, and X.G. Lei. 2014. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets. Antioxidants and Redox Signaling 20: 191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Engels, E. Bilgic, A. Pinto, E. Vasquez, L. Wollschläger, H. Steinbrenner, K. Kellermann, P. Akhyari, A. Lichtenberg, U. Boeken. A cardiopulmonary bypass with deep hypothermic circulatory arrest rat model for the investigation of the systemic inflammation response and induced organ damage. J. Inflamm. (Lond). 11, 26. doi: 10.1186/s12950-014-0026-3 (2014).

  23. Barnes, K.M., J.K. Evenson, A.M. Raines, and R.A. Sunde. 2009. Transcript analysis of the selenoproteome indicates that dietary selenium requirements of rats based on selenium-regulated selenoprotein mRNA levels are uniformly less than those based on glutathione peroxidase activity. Journal of Nutrition 139: 199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jungwirth, B., G.B. Mackensen, M. Blobner, F. Neff, B. Reichart, E.F. Kochs, and G. Nollert. 2006. Neurologic outcome after cardiopulmonary bypass with deep hypothermic circulatory arrest in rats: description of a new model. Journal of Thoracic and Cardiovascular Surgery 131: 805–812.

    Article  PubMed  Google Scholar 

  25. Pinto, A., D.T. Juniper, M. Sanil, L. Morgan, L. Clark, H. Sies, M.P. Rayman, and H. Steinbrenner. 2012. Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. Journal of Inorganic Biochemistry 114: 47–54.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng, W.H., Y.S. Ho, B.A. Valentine, D.A. Ross, G.F. Combs Jr., and X.G. Lei. 1998. Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. Journal of Nutrition 128: 1070–1076.

    CAS  PubMed  Google Scholar 

  27. Oster, O., G. Schmiedel, and W. Prellwitz. 1988. The organ distribution of selenium in German adults. Biological Trace Element Research 15: 23–45.

    Article  CAS  PubMed  Google Scholar 

  28. Armstrong, S.C. 2004. Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovascular Research 61: 427–436.

    Article  CAS  PubMed  Google Scholar 

  29. Boengler, K., D. Hilfiker-Kleiner, H. Drexler, G. Heusch, and R. Schulz. 2008. The myocardial JAK/STAT pathway: from protection to failure. Pharmacology and Therapeutics 120: 172–185.

    Article  CAS  PubMed  Google Scholar 

  30. Willis, M.S., and C. Patterson. 2010. Hold me tight: role of the heat shock protein family of chaperones in cardiac disease. Circulation 122: 1740–1751.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yoshida, T., N. Maulik, Y.S. Ho, J. Alam, and D.K. Das. 2001. H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: a study with transgenic mice heterozygous for targeted disruption of the Heme oxygenase-1 gene. Circulation 103: 1695–1701.

    Article  CAS  PubMed  Google Scholar 

  32. Maulik, N., and D.K. Das. 2002. Redox signaling in vascular angiogenesis. Free Radical Biology and Medicine 33: 1047–1060.

    Article  CAS  PubMed  Google Scholar 

  33. Baker, W.L., M.W. Anglade, E.L. Baker, C.M. White, J. Kluger, and C.I. Coleman. 2009. Use of N-acetylcysteine to reduce post-cardiothoracic surgery complications: a meta-analysis. European Journal of Cardio-Thoracic Surgery 35: 521–527.

    Article  PubMed  Google Scholar 

  34. Venardos, K., G. Harrison, J. Headrick, and A. Perkins. 2004. Selenium supplementation and ischemia-reperfusion injury in rats. Redox Report 9: 317–320.

    Article  CAS  PubMed  Google Scholar 

  35. Brüning, C.A., M. Prigol, C. Luchese, C.R. Jesse, M.M. Duarte, S.S. Roman, and C.W. Nogueira. 2012. Protective effect of diphenyl diselenide on ischemia and reperfusion-induced cerebral injury: involvement of oxidative stress and pro-inflammatory cytokines. Neurochemical Research 37: 2249–2258.

    Article  PubMed  Google Scholar 

  36. Stoedter, M., K. Renko, A. Hög, and L. Schomburg. 2010. Selenium controls the sex-specific immune response and selenoprotein expression during the acute-phase response in mice. Biochemistry Journal 429: 43–51.

    Article  CAS  Google Scholar 

  37. Hoffmann, F.W., A.C. Hashimoto, L.A. Shafer, S. Dow, M.J. Berry, and P.R. Hoffmann. 2010. Dietary selenium modulates activation and differentiation of CD4 + T cells in mice through a mechanism involving cellular free thiols. Journal of Nutrition 140: 1155–1161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Takada, M., K.C. Nadeau, G.D. Shaw, K.A. Marquette, and N.L. Tilney. 1997. The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. Inhibition by a soluble P-selectin ligand. J. Clin. Invest. 99: 2682–2690.

    CAS  PubMed  Google Scholar 

  39. Zhang, F., W. Yu, J.L. Hargrove, P. Greenspan, R.G. Dean, E.W. Taylor, and D.K. Hartle. 2002. Inhibition of TNF-alpha induced ICAM-1, VCAM-1 and E-selectin expression by selenium. Atherosclerosis 161: 381–386.

    Article  CAS  PubMed  Google Scholar 

  40. Montgomery, J.B., J.J. Wichtel, M.G. Wichtel, M.A. McNiven, J.T. McClure, F. Markham, and D.W. Horohov. 2012. Effects of selenium source on measures of selenium status and immune function in horses. Canadian Journal of Veterinary Research 76: 281–291.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, H., Q. Lu, and K. Huang. 2010. Selenium suppressed hydrogen peroxide-induced vascular smooth muscle cells calcification through inhibiting oxidative stress and ERK activation. Journal of Cellular Biochemistry 111: 1556–1564.

    Article  CAS  PubMed  Google Scholar 

  42. Bell, R.M., S.P. Kunuthur, C. Hendry, D. Bruce-Hickman, S. Davidson, and D.M. Yellon. 2013. Matrix metalloproteinase inhibition protects CyPD knockout mice independently of RISK/mPTP signalling: a parallel pathway to protection. Basic Research in Cardiology 108: 331.

    Article  PubMed  Google Scholar 

  43. Santos, N.C., J. Figueira-Coelho, J. Martins-Silva, and C. Saldanha. 2003. Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochemical Pharmacology 65: 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  44. Zou, W., R.A. Roth, H.S. Younis, L.D. Burgoon, and P.E. Ganey. 2010. Oxidative stress is important in the pathogenesis of liver injury induced by sulindac and lipopolysaccharide cotreatment. Toxicology 272: 32–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank A. Borchardt and T. Becher (Institute for Biochemistry and Molecular Biology I) for the excellent technical assistance. The authors are grateful for the continuous support of Dr. M. Sager and Dr. E. Engelhardt (Central animal care facility).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Boeken.

Ethics declarations

Funding

This study was supported by a grant (F/07/12) of Deutsche Stiftung für Herzforschung (Frankfurt a.M., Germany) to Dr. Bilgic, Dr. Boeken, and Dr. Steinbrenner and by a grant (STE 1782/2-2) of Deutsche Forschungsgemeinschaft (DFG; Bonn, Germany) to Dr. Steinbrenner and by the generous support of the S. Bunnenberg Foundation.

Disclosures

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

The study (approval number 87-51.04.2010.A334) was approved by the local authority LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz NRW) and carried out in accordance with German and European guidelines of laboratory animal care.

Additional information

Drs. Akhyari and Lichtenberg are co-senior authors of this work.

Holger Steinbrenner and Esra Bilgic contributed equally to this work.

ELECTRONIC SUPPLEMENTARY MATERIAL

Below is the link to the electronic supplementary material.

Supplementary Figure S1

(PPT 173 kb)

Supplementary Table 1

(DOC 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinbrenner, H., Bilgic, E., Pinto, A. et al. Selenium Pretreatment for Mitigation of Ischemia/Reperfusion Injury in Cardiovascular Surgery: Influence on Acute Organ Damage and Inflammatory Response. Inflammation 39, 1363–1376 (2016). https://doi.org/10.1007/s10753-016-0368-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0368-5

KEY WORDS

Navigation