Skip to main content

Advertisement

Log in

Impaired Ca2+ Homeostasis and Decreased Orai1 Expression Modulates Arterial Hyporeactivity to Vasoconstrictors During Endotoxemia

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

ABSTRACT

We hypothesized that SIRS/endotoxemia-associated hyporesponsiveness to vasoconstrictors is mediated by smaller increases in intracellular Ca2+ levels due to reduced signaling via the STIM/Orai. Male Wistar rats were injected either with saline or bacterial LPS (i.p.; 10 mg/kg), and experiments were performed 24 h later. LPS-injected rats exhibited decreased systolic blood pressure, increased heart rate, neutrophils’ migration into the peritoneal cavity, and elevated alanine aminotransferase levels. Additionally, second-order mesenteric arteries from endotoxemic rats displayed hyporeactivity to contractile agents such as phenylephrine and potassium chloride; decreased contractile responses to Ca2+; reduced contraction during Ca2+ loading; and smaller intracellular Ca2+ stores. Decreased Orai1, but not STIM1, expression was found in resistance mesenteric arteries from LPS-treated rats. Additionally, cultured vascular smooth muscle cell (VSMC) treated with LPS resulted in increased TLR-4 expression, but Myd-88 and STIM-1 expression were not changed. Our data suggest that in endotoxemia, Ca2+ homeostasis is disrupted in VSMC, with decreased Ca2+ influx, smaller concentrations of Ca2+ in the sarcoplasmic reticulum, and decreased activation of Orai1. Abnormal Ca2+ handling contributes to LPS-associated vascular hyporeactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hotchkiss, R.S., and I.E. Karl. 2003. The pathophysiology and treatment of sepsis. N Engl J Med 348: 138–150.

    Article  CAS  PubMed  Google Scholar 

  2. Andreasen, A.S., K.S. Krabbe, R. Krogh-Madsen, S. Taudorf, B.K. Pedersen, and K. Moller. 2008. Human endotoxemia as a model of systemic inflammation. Curr Med Chem 15: 1697–1705.

    Article  CAS  PubMed  Google Scholar 

  3. Chierego, M., C. Verdant, and D. De Backer. 2006. Microcirculatory alterations in critically ill patients. Minerva Anestesiol 72: 199–205.

    CAS  PubMed  Google Scholar 

  4. Christensen, K.L., and M.J. Mulvany. 2001. Location of resistance arteries. J Vasc Res 38: 1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Spronk, P.E., D.F. Zandstra, and C. Ince. 2004. Bench-to-bedside review: sepsis is a disease of the microcirculation. Crit Care 8: 462–468.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Virdis, A., R. Colucci, M. Fornai, C. Blandizzi, E. Duranti, S. Pinto, et al. 2005. Cyclooxygenase-2 inhibition improves vascular endothelial dysfunction in a rat model of endotoxic shock: role of inducible nitric-oxide synthase and oxidative stress. J Pharmacol Exp Ther 312: 945–953.

    Article  CAS  PubMed  Google Scholar 

  7. da Silva-Santos, J.E., C.W. Chiao, R. Leite, and R.C. Webb. 2009. The Rho-A/Rho-kinase pathway is up-regulated but remains inhibited by cyclic guanosine monophosphate-dependent mechanisms during endotoxemia in small mesenteric arteries. Crit Care Med 37: 1716–1723.

    Article  PubMed  Google Scholar 

  8. Chen, S.J., S.Y. Li, C.C. Shih, M.H. Liao, and C.C. Wu. 2010. NO contributes to abnormal vascular calcium regulation and reactivity induced by peritonitis-associated septic shock in rats. Shock 33: 473–478.

    Article  PubMed  Google Scholar 

  9. Ding, Y.M., Q.X. Shan, X. Zhang, H.F. Jin, J. Du, and Q. Xia. 2003. NO/cGMP signal pathway involved in the disturbance of calcium homeostasis in vascular smooth muscle during the late phase of sepsis. Zhejiang Da Xue Xue Bao Yi Xue Ban 32: 514–518.

    CAS  PubMed  Google Scholar 

  10. Ho, K.H., C.Y. Kwan, and J.P. Bourreau. 1996. Hyporesponsiveness to Ca2+ of aortic smooth muscle in endotoxin-treated rats: no-dependent and -independent in vitro mechanisms. Res Commun Mol Pathol Pharmacol 92: 275–284.

    CAS  PubMed  Google Scholar 

  11. Dippold, R.P., and S.A. Fisher. 2014. Myosin phosphatase isoforms as determinants of smooth muscle contractile function and calcium sensitivity of force production. Microcirculation 21: 239–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prakriya, M. 2013. Store-operated Orai channels: structure and function. Curr Top Membr 71: 1–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. DebRoy, A., S.M. Vogel, D. Soni, P.C. Sundivakkam, A.B. Malik, and C. Tiruppathi. 2014. Cooperative signaling via transcription factors NF-kappaB and AP1/c-Fos mediates endothelial cell STIM1 expression and hyperpermeability in response to endotoxin. J Biol Chem 289: 24188–24201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gandhirajan, R.K., S. Meng, H.C. Chandramoorthy, K. Mallilankaraman, S. Mancarella, H. Gao, et al. 2013. Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation. J Clin Invest 123: 887–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Karaki, H., H. Kubota, and N. Urakawa. 1979. Mobilization of stored calcium for phasic contraction induced by norepinephrine in rabbit aorta. Eur J Pharmacol 56: 237–245.

    Article  CAS  PubMed  Google Scholar 

  16. Perry, P.A., and R.C. Webb. 1991. Agonist-sensitive calcium stores in arteries from steroid hypertensive rats. Hypertension 17: 603–611.

    Article  CAS  PubMed  Google Scholar 

  17. Lima, V.V., F.F. Giachini, T. Matsumoto, W. Li, A.F. Bressan, D. Chawla, et al. 2016. High fat diet increases O-GlcNAc levels in cerebral arteries: a link to vascular dysfunction associated with hyperlipidemia/obesity? Clinical Science (London). doi:10.1042/CS20150777.

  18. De Backer, D., J. Creteur, J.C. Preiser, M.J. Dubois, and J.L. Vincent. 2002. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166: 98–104.

    Article  PubMed  Google Scholar 

  19. Edul, V.K., G. Ferrara, and A. Dubin. 2010. Microcirculatory dysfunction in sepsis. Endocr Metab Immune Disord Drug Targets 10: 235–246.

    Article  CAS  PubMed  Google Scholar 

  20. Sakr, Y., M. Chierego, M. Piagnerelli, C. Verdant, M.J. Dubois, M. Koch, et al. 2007. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit Care Med 35: 1639–1644.

    Article  PubMed  Google Scholar 

  21. Zhang, S., N. Cui, S. Li, L. Guo, Y. Wu, D. Zhu, et al. 2014. Interception of the endotoxin-induced arterial hyporeactivity to vasoconstrictors. Vascul Pharmacol 62: 15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiao, C.W., J.E. da Silva-Santos, F.R. Giachini, R.C. Tostes, M.J. Su, and R.C. Webb. 2013. P2X7 receptor activation contributes to an initial upstream mechanism of lipopolysaccharide-induced vascular dysfunction. Clin Sci (Lond) 125: 131–141.

    Article  CAS  Google Scholar 

  23. O’Brien, A.J., A.J. Wilson, R. Sibbald, M. Singer, and L.H. Clapp. 2001. Temporal variation in endotoxin-induced vascular hyporeactivity in a rat mesenteric artery organ culture model. Br J Pharmacol 133: 351–360.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mansart, A., P.E. Bollaert, P. Giummelly, C. Capdeville-Atkinson, and J. Atkinson. 2006. Effects of dexamethasone and L-canavanine on the intracellular calcium-contraction relation of the rat tail artery during septic shock. Am J Physiol Heart Circ Physiol 291: H1177–1182.

    Article  CAS  PubMed  Google Scholar 

  25. Schlossmann, J., R. Feil, and F. Hofmann. 2003. Signaling through NO and cGMP-dependent protein kinases. Ann Med 35: 21–27.

    Article  CAS  PubMed  Google Scholar 

  26. Himpens, B., G. Matthijs, and A.P. Somlyo. 1989. Desensitization to cytoplasmic Ca2+ and Ca2+ sensitivities of guinea-pig ileum and rabbit pulmonary artery smooth muscle. J Physiol 413: 489–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hassoun, S.M., X. Marechal, D. Montaigne, Y. Bouazza, B. Decoster, S. Lancel, et al. 2008. Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 36: 2590–2596.

    Article  CAS  PubMed  Google Scholar 

  28. Hobai, I.A., J. Edgecomb, K. LaBarge, and W.S. Colucci. 2015. Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 43: 3–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, X., O.Y. Bernecker, N.S. Manohar, R.J. Hajjar, J. Hellman, F. Ichinose, et al. 2005. Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 33: 598–604.

    Article  PubMed  Google Scholar 

  30. Hobai, I.A., E.S. Buys, J.C. Morse, J. Edgecomb, E.H. Weiss, A.A. Armoundas, et al. 2013. SERCA Cys674 sulphonylation and inhibition of L-type Ca2+ influx contribute to cardiac dysfunction in endotoxemic mice, independent of cGMP synthesis. Am J Physiol Heart Circ Physiol 305: H1189–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasaki, F., S. Osugi, K. Shimamura, and S. Sunano. 1993. Relationship between blood pressure and smooth muscle tone in aortae of hypertensive rats: roles of [Ca2+]. J Smooth Muscle Res 29: 69–79.

    Article  CAS  PubMed  Google Scholar 

  32. Parekh, A.B., and J.W. Putney Jr. 2005. Store-operated calcium channels. Physiol Rev 85: 757–810.

    Article  CAS  PubMed  Google Scholar 

  33. Vig, M., C. Peinelt, A. Beck, D.L. Koomoa, D. Rabah, M. Koblan-Huberson, et al. 2006. CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312: 1220–1223.

    Article  CAS  PubMed  Google Scholar 

  34. Kawasaki, T., I. Lange, and S. Feske. 2009. A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels. Biochem Biophys Res Commun 385: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shinde, A.V., R.K. Motiani, X. Zhang, I.F. Abdullaev, A.P. Adam, J.C. Gonzalez-Cobos, et al. 2013. STIM1 controls endothelial barrier function independently of Orai1 and Ca2+ entry. Sci Signal 6: ra18.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pozo-Guisado, E., and F.J. Martin-Romero. 2013. The regulation of STIM1 by phosphorylation. Commun Integr Biol 6: e26283.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scirocco, A., P. Matarrese, C. Petitta, A. Cicenia, B. Ascione, C. Mannironi, et al. 2010. Exposure of Toll-like receptors 4 to bacterial lipopolysaccharide (LPS) impairs human colonic smooth muscle cell function. J Cell Physiol 223: 442–450.

    CAS  PubMed  Google Scholar 

  38. Bomfim, G.F., R.A. Dos Santos, M.A. Oliveira, F.R. Giachini, E.H. Akamine, R.C. Tostes, et al. 2012. Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats. Clin Sci (Lond) 122: 535–543.

    Article  CAS  Google Scholar 

  39. Yang, X., D. Coriolan, V. Murthy, K. Schultz, D.T. Golenbock, and D. Beasley. 2005. Proinflammatory phenotype of vascular smooth muscle cells: role of efficient Toll-like receptor 4 signaling. Am J Physiol Heart Circ Physiol 289: H1069–1076.

    Article  CAS  PubMed  Google Scholar 

  40. Yang, C., X. Mo, J. Lv, X. Liu, M. Yuan, M. Dong, et al. 2012. Lipopolysaccharide enhances FcepsilonRI-mediated mast cell degranulation by increasing Ca2+ entry through store-operated Ca2+ channels: implications for lipopolysaccharide exacerbating allergic asthma. Exp Physiol 97: 1315–1327.

    Article  CAS  PubMed  Google Scholar 

  41. Sun, R., Z. Zhu, Q. Su, T. Li, and Q. Song. 2012. Toll-like receptor 4 is involved in bacterial endotoxin-induced endothelial cell injury and SOC-mediated calcium regulation. Cell Biol Int 36: 475–481.

    Article  CAS  PubMed  Google Scholar 

  42. Tsai, T.Y., S.L. Lou, K.L. Wong, M.L. Wang, T.H. Su, Z.M. Liu, et al. 2015. Suppression of Ca(2+) influx in endotoxin-treated mouse cerebral cortex endothelial bEND.3 cells. Eur J Pharmacol 755: 80–87.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by Fundação de Amparo à Pesquisa do Estado de Mato Grosso (FAPEMAT) [grant number 151371/2014 (to F.R.G.], Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) [grant number 23038009165/2013-48 (to V.V.L.], Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [grant number 2010/52214-6 (to R.C.T)], Conselho Nacional de Desenvolvimento Científico e Tecnológico [(CNPq) 471675/2013-0 and 305823/2015-9 (to F.R.G), 445777/2014-1 (V.V.L.)], and National Institutes of Health (NIH) [HL71138 and DK83685 (R.C.W)]. We would also like to thank all the technical staff, who have worked in our laboratories and contributed to the studies described here.

AUTHOR CONTRIBUTION

Fernanda Giachini and Victor Lima performed the vascular reactivity studies, in addition to being responsible for writing the paper. Vanessa Dela Justina conducted the cell culture. Arthur Nonato and Vanessa Dela Justina conducted Western blot analysis. Vania Olivon and Camila Zanotto conducted biochemistry analisys. Rita Tostes and Clinton Webb provided the animals used in the study and, along with Vania Olivon, continuously provided ideas and expertise for the project and revisions for the paper. Fernanda Giachini designed the hypothesis and supervised the entire study. All of the authors had full access to the data and take responsibility for its integrity and the accuracy of the analysis. All authors have read and agree to the paper as written.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda R. Giachini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonato, A.O., Olivon, V.C., Dela Justina, V. et al. Impaired Ca2+ Homeostasis and Decreased Orai1 Expression Modulates Arterial Hyporeactivity to Vasoconstrictors During Endotoxemia . Inflammation 39, 1188–1197 (2016). https://doi.org/10.1007/s10753-016-0354-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0354-y

KEY WORDS

Navigation