Skip to main content

Advertisement

Log in

The Effects of IL-22 on the Inflammatory Mediator Production, Proliferation, and Barrier Function of HUVECs

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of interleukin (IL)-22 on proliferation function and inflammatory mediator production and barrier function of human umbilical vein endothelial cells (HUVECs). The expression of mRNA was detected by RT-PCR. The proliferation ability of cells was evaluated using a cell counting kit assay. Real-time quantitative PCR and Western blot were used to detect the expression of inflammatory mediators. The endothelial barrier permeability was assessed by measuring permeability to FITC-labeled dextran. The distribution of occludin was detected by immunofluorescence. IL-22R1 mRNA expression was noted in HUVECs. IL-22 could enhance the proliferation ability of HUVECs and suppress lipopolysaccharide (LPS)-induced proliferation inhibition in these cells. IL-22 also enhanced the production of CCL2 and CCL20 by HUVECs. Besides, IL-22 could improve barrier function and decrease LPS-induced increased cellular permeability and inhibit the LPS-induced destruction of occludin in HUVECs. IL-22 may play a protective role in the development of vasculitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pestka, S., C.D. Krause, D. Sarkar, et al. 2004. Interleukin-10 and related cytokines and receptors. Annual Review of Immunology 22: 929–979.

    Article  CAS  PubMed  Google Scholar 

  2. Kotenko, S.V., L.S. Izotova, O.V. Mirochnitchenko, et al. 2001. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rβ) is a common chain of both the IL-10 and IL-22 (IL-10-related cell-derived inducible factor, IL-TIF) receptor complexes. Journal of Biological Chemistry 276(4): 2725–2732.

    Article  CAS  PubMed  Google Scholar 

  3. Tachiiri, A., R. Imamura, Y. Wang, et al. 2003. Genomic structure and inducible expression of the IL-22 receptor α chain in mice. Genes and Immunity 4(2): 153–159.

    Article  CAS  PubMed  Google Scholar 

  4. Wolk, K., S. Kunz, E. Witte, et al. 2004. IL-22 increases the innate immunity of tissues. Immunity 21(2): 241–254.

    Article  CAS  PubMed  Google Scholar 

  5. Hammerich, L., and F. Tacke. 2014. Interleukins in chronic liver disease: lessons learned from experimental mouse models. Clinical and Experimental Gastroenterology 7: 297.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Troncone, E., I. Marafini, F. Pallone, et al. 2013. Th17 cytokines in inflammatory bowel diseases: discerning the good from the bad. International Reviews of Immunology 32(5-6): 526–533.

    Article  CAS  PubMed  Google Scholar 

  7. Kong, Q., W. Wu, F. Yang, et al. 2012. Increased expressions of IL-22 and Th22 cells in the coxsackievirus B3-induced mice acute viral myocarditis. Virology Journal 9: 232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scheiermann, P., M. Bachmann, I. Goren, et al. 2013. Application of interleukin-22 mediates protection in experimental acetaminophen-induced acute liver injury. The American Journal of Pathology 182(4): 1107–1113.

    Article  CAS  PubMed  Google Scholar 

  9. Ciccia, F., A. Accardo‐Palumbo, R. Alessandro, et al. 2012. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis & Rheumatism 64(6): 1869–1878.

    Article  CAS  Google Scholar 

  10. Hoegl, S., M. Bachmann, P. Scheiermann, et al. 2011. Protective properties of inhaled IL-22 in a model of ventilator-induced lung injury. American Journal of Respiratory Cell and Molecular Biology 44(3): 369–376.

    Article  CAS  PubMed  Google Scholar 

  11. Sonnenberg, G.F., M.G. Nair, T.J. Kirn, et al. 2010. Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. The Journal of Experimental Medicine 207(6): 1293–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song, R.H., Z.Y. Yu, Q. Qin, et al. 2014. Different levels of circulating Th22 cell and its related molecules in Graves’ disease and Hashimoto’s thyroiditis. International Journal of Clinical and Experimental Pathology 7(7): 4024.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, P, Bai F, Zenewicz L A, et al. 2012. IL-22 signaling contributes to West Nile encephalitis pathogenesis

  14. Sonnenberg, G.F., L.A. Fouser, and D. Artis. 2010. 1 Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at Barrier surfaces. Advances in Immunology 107: 1.

    Article  CAS  PubMed  Google Scholar 

  15. Cai, T., Q. Wang, Q. Zhou, et al. 2013. Increased expression of IL-22 is associated with disease activity in Behcet’s disease. PloS One 8(3): e59009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, H., X. Huang, and A. Kijlstra. 2008. Upregulated IL-23 and IL-17 in Behçet patients with active uveitis. Investigative Ophthalmology & Visual Science 49(7): 3058–3064.

    Article  Google Scholar 

  17. Rasouli, M., B. Heidari, and M. Kalani. 2014. Downregulation of Th17 cells and the related cytokines with treatment in Kawasaki disease. Immunology Letters 162(1): 269–275.

    Article  CAS  PubMed  Google Scholar 

  18. Shang, W.Q., J.J. Yu, L. Zhu, et al. 2015. Blocking IL-22, a potential treatment strategy for adenomyosis by inhibiting crosstalk between vascular endothelial and endometrial stromal cells. American Journal of Translational Research 7(10): 1782.

    PubMed  PubMed Central  Google Scholar 

  19. Mühl, H., P. Scheiermann, M. Bachmann, et al. 2013. IL-22 in tissue-protective therapy. British Journal of Pharmacology 169(4): 761–771.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao, Y., J. Sun, W. Dou, et al. 2015. Curcumin inhibits proliferation of interleukin-22-treated HaCaT cells. International journal of clinical and experimental medicine 8(6): 9580.

    PubMed  PubMed Central  Google Scholar 

  21. Schultze, J L, Schmieder A, Goerdt S. 2015. Macrophageactivation in human diseases[C]//Seminars in immunology. Academic Press.

  22. Tamoutounour, S., M. Guilliams, F.M. Sanchis, et al. 2013. Origins and functional specialization of macrophages and of conventional and monocyte-derived dendritic cells in mouse skin. Immunity 39(5): 925–938.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, S., M. Xu, F. Li, et al. 2012. Ethanol promotes mammary tumor growth and angiogenesis: the involvement of chemoattractant factor MCP-1. Breast Cancer Research and Treatment 133(3): 1037–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fabbri, E., E. Brognara, G. Montagner, et al. 2015. Regulation of IL-8 gene expression in gliomas by microRNA miR-93. BMC Cancer 15(1): 661.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kumar, P., Q. Shen, C.D. Pivetti, et al. 2009. Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Reviews in Molecular Medicine 11: e19.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yong, Y.K., H.S. Chiong, M.N. Somchit, et al. 2015. Bixa orellana leaf extract suppresses histamine-induced endothelial hyperpermeability via the PLC-NO-cGMP signaling cascade. BMC Complementary and Alternative Medicine 15(1): 356.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li, J, Cong X, Zhang Y, et al. 2015. ZO-1 and-2 Are Required for TRPV1-Modulated Paracellular Permeability. Journal of dental research: 0022034515609268.

  28. Cabrera, G, Fernández-Brando R J, Mejías M P, et al. 2015. Leukotriene C4 increases the susceptibility of adult mice to Shiga toxin-producing Escherichia coli infection. International Journal of Medical Microbiology.

  29. Medvedev, A.E., K.M. Kopydlowski, and S.N. Vogel. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. The Journal of Immunology 164(11): 5564–5574.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, T.H., and J.S. Bae. 2010. Ecklonia cava extracts inhibit lipopolysaccharide induced inflammatory responses in human endothelial cells. Food and Chemical Toxicology 48(6): 1682–1687.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, X, Wang T, Gui P, et al. 2013. Resolvin D1 reverts lipopolysaccharide-induced TJ proteins disruption and the increase of cellular permeability by regulating IκBα signaling in human vascular endothelial cells. Oxidative medicine and cellular longevity 2013.

  32. Al-Sadi, R., K. Khatib, S. Guo, et al. 2011. Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology-Gastrointestinal and Liver Physiology 300(6): G1054–G1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alan, S.L., K.M. McCarthy, S.A. Francis, et al. 2005. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. American Journal of Physiology-Cell Physiology 288(6): C1231–C1241.

    Article  Google Scholar 

  34. Yang, J., W.J. Kim, H.O. Jun, et al. 2015. Hypoxia-induced fibroblast growth factor 11 stimulates capillary-like endothelial tube formation. Oncology Reports 34(5): 2745–2751.

    PubMed  Google Scholar 

  35. Zhang, F., X. Man, H. Yu, et al. 2015. Synergistic protective effects of escin and low-dose glucocorticoids against vascular endothelial growth factor-induced blood-retinal barrier breakdown in retinal pigment epithelial and umbilical vein endothelial cells. Molecular Medicine Reports 11(2): 1372–1377.

    CAS  PubMed  Google Scholar 

  36. Ma, X, Zhang H, Pan Q, et al. 2013. Hypoxia/aglycemia-induced endothelial barrier dysfunction and tight junction protein downregulation can be ameliorated by citicoline.

  37. Sheth, P., N.D. Santos, A. Seth, et al. 2007. Lipopolysaccharide disrupts tight junctions in cholangiocyte monolayers by a c-Src-, TLR4-, and LBP-dependent mechanism. American Journal of Physiology-Gastrointestinal and Liver Physiology 293(1): G308–G318.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Cai.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Li, H., Chen, Y. et al. The Effects of IL-22 on the Inflammatory Mediator Production, Proliferation, and Barrier Function of HUVECs. Inflammation 39, 1099–1107 (2016). https://doi.org/10.1007/s10753-016-0341-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-016-0341-3

KEY WORDS

Navigation