Skip to main content
Log in

Gallic Acid-g-Chitosan Modulates Inflammatory Responses in LPS-Stimulated RAW264.7 Cells Via NF-κB, AP-1, and MAPK Pathways

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Chitosan is a naturally occurring polysaccharide, which has exhibited antioxidant, antimicrobial, and anti-cancer activities among others. Modification of chitosan by grafting phenolic compounds is a good strategy for improvement of bioactivities of chitosan. We investigated the anti-inflammatory action of gallic acid-grafted-chitosan (GAC) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. GAC inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) by inhibiting inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in LPS-stimulated RAW264.7 macrophages. GAC also suppressed the production and mRNA expression of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). GAC inactivated nuclear factor-κB (NF-κB) via inhibiting the phosphorylation and degradation of the NF-κB inhibitor, IκB. In addition, GAC suppresses the activation of activator protein-1 (AP-1) through the phosphorylation of mitogen-activated protein kinase (MAPK) such as extracellular signal-regulated kinase (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). These results suggest that GAC has the potential anti-inflammatory action by downregulating transcriptional factors (NF-κB and AP-1) through MAPK signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abarikwu, S.O. 2014. Kolaviron, a natural flavonoid from the seeds of Garcinia kola, reduces LPS-induced inflammation in macrophages by combined inhibition of IL-6 secretion, and inflammatory transcription factors, ERK1/2, NF-kappaB, p38, Akt, p-c-JUN and JNK. Biochimica et Biophysica Acta 1840: 2373–81.

    Article  CAS  PubMed  Google Scholar 

  2. Reddy, D.B., and P. Reddanna. 2009. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Biochemical and Biophysical Research Communication 381: 112–7.

    Article  CAS  Google Scholar 

  3. Choudhari, A.S., P. Raina, M.M. Deshpande, A.G. Wali, A. Zanwar, S.L. Bodhankar, and R. Kaul-Ghanekar. 2013. Evaluating the anti-inflammatory potential of Tectaria cicutaria L. rhizome extract in vitro as well as in vivo. Journal of Ethnopharmacology 150: 215–22.

    Article  CAS  PubMed  Google Scholar 

  4. Mourya, V.K., and N.N. Inamdar. 2008. Chitosan-modifications and applications: opportunities galore. Reactive and Functional Polymers 68: 1013–51.

    Article  CAS  Google Scholar 

  5. Cho, Y.S., S.K. Kim, C.B. Ahn, and J.Y. Je. 2011. Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydrate Polymers 83: 1617–22.

    Article  CAS  Google Scholar 

  6. Cho, Y.S., S.K. Kim, and J.Y. Je. 2011. Chitosan gallate as potential antioxidant biomaterial. Bioorganic & Medicinal Chemistry Letters 21: 3070–3.

    Article  CAS  Google Scholar 

  7. Lee, D.S., S.H. Eom, Y.M. Kim, H.S. Kim, M.J. Yim, S.H. Lee, D.H. Kim, and J.Y. Je. 2014. Antibacterial and synergic effects of gallic acid-grafted-chitosan with beta-lactams against methicillin-resistant Staphylococcus aureus (MRSA). Canadian Journal of Microbiology 60: 629–38.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, D.S., and J.Y. Je. 2013. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. Journal of Agricultural and Food Chemistry 61: 6574–9.

    Article  CAS  PubMed  Google Scholar 

  9. Green, L.C., D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok, and S.R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Analytical Biochemistry 126: 131–8.

    Article  CAS  PubMed  Google Scholar 

  10. Lai, C.S., Y.S. Lai, D.H. Kuo, C.H. Wu, C.T. Ho, and M.H. Pan. 2011. Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathway. Journal of Functional Foods 3: 198–206.

    CAS  Google Scholar 

  11. Kim, H.K., B.S. Cheon, Y.H. Kim, S.Y. Kim, and H.P. Kim. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW264.7 and their structure-activity relationships. Biochemical Pharmacology 58: 759–65.

    Article  CAS  PubMed  Google Scholar 

  12. Salvemini, D., T.P. Misko, J.L. Masferrer, K. Seibert, M.G. Currie, and P. Needleman. 1993. Nitric oxide activates cyclooxygenase enzymes. Proceedings of the National Academy of Science of the United States of America 90: 7240–4.

    Article  CAS  Google Scholar 

  13. Kim, J.-A., B.-N. Ahn, C.-S. Kong, and S.-K. Kim. 2011. Anti-inflammatory action of sulfated glucosamine on cytokine regulation in LPS-activated PMA-differentiated THP-1 macrophages. Inflammation Research 60: 1131–8.

    Article  CAS  PubMed  Google Scholar 

  14. Seyidova, D., A. Aliyev, N. Rzayev, M. Obrenovich, B.T. Lamb, M.A. Smith, J.C. De La Torre, G. Perry, and G. Aliev. 2004. The role of nitric oxide in the pathogenesis of brain lesions during the development of Alzheimer’s disease. In Vivo 18: 325–34.

    CAS  PubMed  Google Scholar 

  15. Cho, Y.-S., S.-H. Lee, S.-K. Kim, C.-B. Ahn, and J.-Y. Je. 2011. Aminoethyl-chitosan inhibits LPS-induced inflammatory mediators, iNOS and COX-2 expression in RAW264. 7 mouse macrophages. Process Biochemistry 46: 465–70.

    Article  CAS  Google Scholar 

  16. Chou, T.-C., E. Fu, and E. Shen. 2003. Chitosan inhibits prostaglandin E2 formation and cyclooxygenase-2 induction in lipopolysaccharide-treated RAW 264.7 macrophages. Biochemical and Biophysical Research Communication 308: 403–7.

    Article  CAS  Google Scholar 

  17. Rajapakse, N., M.M. Kim, E. Mendis, and S.K. Kim. 2008. Inhibition of inducible nitric oxide synthase and cyclooxygenase‐2 in lipopolysaccharide‐stimulated RAW264. 7 cells by carboxybutyrylated glucosamine takes place via down‐regulation of mitogen‐activated protein kinase‐mediated nuclear factor‐κB signaling. Immunology 123: 348–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Yoon, W.J., J.Y. Moon, G. Song, Y.K. Lee, M.S. Han, J.S. Lee, B.S. Ihm, W.J. Lee, N.H. Lee, and C.G. Hyun. 2010. Artemisia fukudo essential oil attenuates LPS-induced inflammation by suppressing NF-kappaB and MAPK activation in RAW 264.7 macrophages. Food and Chemical Toxicology 48: 1222–9.

    Article  CAS  PubMed  Google Scholar 

  19. Heo, S.K., H.S. Yi, H.J. Yun, C.H. Ko, J.W. Choi, and S.D. Park. 2010. Ethylacetate extract from Draconis Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production. Food and Chemical Toxicology 48: 1129–36.

    Article  CAS  PubMed  Google Scholar 

  20. Kundu, J.K., Y.K. Shin, and Y.-J. Surh. 2006. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-κB and AP-1 as prime targets. Biochemical Pharmacology 72: 1506–15.

    Article  CAS  PubMed  Google Scholar 

  21. Casettari, L., L. Gennari, D. Angelino, P. Ninfali, and E. Castagnino. 2012. ORAC of chitosan and its derivatives. Food Hydrocolloids 28: 243–7.

  22. Whitmarsh, A., and R. Davis. 1996. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. Journal of Molecular Medicine 74: 589–607.

    Article  CAS  PubMed  Google Scholar 

  23. Silvers, A.L., M.A. Bachelor, and G.T. Bowden. 2003. The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression. Neoplasia (New York, NY) 5: 319.

    Article  CAS  Google Scholar 

  24. Giri, R.S., H.M. Thaker, T. Giordano, J. Williams, D. Rogers, V. Sudersanam, and K.K. Vasu. 2009. Design, synthesis and characterization of novel 2-(2, 4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-κB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. European Journal of Medicinal Chemistry 44: 2184–9.

    Article  CAS  PubMed  Google Scholar 

  25. Franklin, C.C., and A.S. Kraft. 1997. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. Journal of Biological Chemistry 272: 16917–23.

    Article  CAS  PubMed  Google Scholar 

  26. Hazzalin, C.A., and L.C. Mahadevan. 2002. MAPK-regulated transcription: a continuously variable gene switch? Nature Reviews Molecular Cell Biology 3: 30–40.

    Article  CAS  PubMed  Google Scholar 

  27. Kaminska, B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta 1754: 253–62.

    Article  CAS  PubMed  Google Scholar 

  28. Uto, T., M. Fujii, and D.X. Hou. 2005. 6-(Methylsulfinyl)hexyl isothiocyanate suppresses inducible nitric oxide synthase expression through the inhibition of Janus kinase 2-mediated JNK pathway in lipopolysaccharide-activated murine macrophages. Biochemical Pharmacology 70: 1211–21.

    Article  CAS  PubMed  Google Scholar 

  29. Surh, Y.J., K.S. Chun, H.H. Cha, S.S. Han, Y.S. Keum, K.K. Park, and S.S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Research 480–481: 243–68.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2057530).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Young Je.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, CB., Jung, WK., Park, SJ. et al. Gallic Acid-g-Chitosan Modulates Inflammatory Responses in LPS-Stimulated RAW264.7 Cells Via NF-κB, AP-1, and MAPK Pathways. Inflammation 39, 366–374 (2016). https://doi.org/10.1007/s10753-015-0258-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0258-2

KEY WORDS

Navigation