Skip to main content

Advertisement

Log in

The Specific Roles of JAK/STAT Signaling Pathway in Sepsis

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway is a principal signaling pathway for the signal transduction of many pivotal cytokines involved in sepsis. Binding of cytokines to corresponding receptors can activate associated JAK kinases, which selectively phosphorylate STATs. Activated STATs then translocate to the nucleus and play a critical role in the transcription of target genes. During the past several years, significant progress has been made in the understanding of the roles of JAK/STAT pathway in sepsis. The aims of this review are to describe the present knowledge about JAK/STAT signaling pathway, describe the specific roles of JAK/STAT pathway in sepsis, and put forward the prospect for future studies of JAK/STAT signaling pathway in sepsis. A PubMed database search was performed for studies of JAKs and STATs in sepsis. It has been shown that a variety of cytokines can exert their biological effects via the JAK/STAT signaling pathway. JAK/STAT pathway has been shown related to the release of various cytokines and inflammatory mediators and involved in the regulation of immune response in sepsis. Moreover, JAK/STAT pathway has been shown involved in organ damage and other dysfunctions in sepsis models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Angus, D.C., W.T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Carcillo, and M.R. Pinsky. 2001. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Critical Care Medicine 29(7): 1303–1310.

    Article  CAS  PubMed  Google Scholar 

  2. Chalupka, A.N., and D. Talmor. 2012. The economics of sepsis. Critical Care Clinics 28(1): 57–76. doi:10.1016/j.ccc.2011.09.003. 1.

    Article  PubMed  Google Scholar 

  3. Martin, G.S., D.M. Mannino, S. Eaton, and M. Moss. 2003. The epidemiology of sepsis in the United States from 1979 through 2000. New England Journal of Medicine 348(16): 1546–1554. doi:10.1056/Nejmoa022139.

    Article  PubMed  Google Scholar 

  4. Hoyert, D.L., E. Arias, B.L. Smith, S.L. Murphy, and K.D. Kochanek. 2001. Deaths: Final data for 1999. National vital statistics reports: from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System 49(8): 1–113.

    Google Scholar 

  5. Parrillo, J.E., M.M. Parker, C. Natanson, A.F. Suffredini, R.L. Danner, R.E. Cunnion, et al. 1990. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of Internal Medicine 113(3): 227–242.

    Article  CAS  PubMed  Google Scholar 

  6. Zhou, J., C. Qian, M. Zhao, X. Yu, Y. Kang, X. Ma, et al. 2014. Epidemiology and outcome of severe sepsis and septic shock in intensive care units in mainland China. PloS One 9(9): e107181. doi:10.1371/journal.pone.0107181.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Cavaillon, J.M., C. Munoz, C. Fitting, B. Misset, and J. Carlet. 1992. Circulating cytokines: the tip of the iceberg? Circulatory Shock 38(2): 145–152.

    CAS  PubMed  Google Scholar 

  8. Wu, H.P., C.L. Wu, C.K. Chen, K. Chung, J.C. Tseng, Y.C. Liu, et al. 2008. The interleukin-4 expression in patients with severe sepsis. Journal of Critical Care 23(4): 519–524. doi:10.1016/j.jcrc.2007.11.008.

    Article  CAS  PubMed  Google Scholar 

  9. Steinhauser, M.L., C.M. Hogaboam, N.W. Lukacs, R.M. Strieter, and S.L. Kunkel. 1999. Multiple roles for IL-12 in a model of acute septic peritonitis. Journal of Immunology 162(9): 5437–5443.

    CAS  Google Scholar 

  10. Song, G.Y., C.S. Chung, I.H. Chaudry, and A. Ayala. 1999. What is the role of interleukin 10 in polymicrobial sepsis: Anti-inflammatory agent or immunosuppressant? Surgery 126(2): 378–383.

    Article  CAS  PubMed  Google Scholar 

  11. Nijsten, M.W., C.E. Hack, M. Helle, H.J. ten Duis, H.J. Klasen, and L.A. Aarden. 1991. Interleukin-6 and its relation to the humoral immune response and clinical parameters in burned patients. Surgery 109(6): 761–767.

    CAS  PubMed  Google Scholar 

  12. Heinzel, F.P. 1990. The role of IFN-gamma in the pathology of experimental endotoxemia. Journal of Immunology 145(9): 2920–2924.

    CAS  Google Scholar 

  13. Jaime-Figueroa, S., J. De Vicente, J. Hermann, A. Jahangir, S. Jin, A. Kuglstatter, et al. 2013. Discovery of a series of novel 5H-pyrrolo[2,3-b]pyrazine-2-phenyl ethers, as potent JAK3 kinase inhibitors. Bioorganic & Medicinal Chemistry Letters 23(9): 2522–2526. doi:10.1016/j.bmcl.2013.03.015.

    Article  CAS  Google Scholar 

  14. O’Shea, J.J., M. Pesu, D.C. Borie, and P.S. Changelian. 2004. A new modality for immunosuppression: Targeting the JAK/STAT pathway. Nature Reviews Drug Discovery 3(7): 555–564. doi:10.1038/nrd1441.

    Article  PubMed  Google Scholar 

  15. Tepass, U. 2009. FERM proteins in animal morphogenesis. Current Opinion in Genetics & Development 19(4): 357–367. doi:10.1016/j.gde.2009.05.006.

    Article  CAS  Google Scholar 

  16. Olsen, J.V., B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen, et al. 2006. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3): 635–648. doi:10.1016/j.cell.2006.09.026.

    Article  CAS  PubMed  Google Scholar 

  17. Kisseleva, T., S. Bhattacharya, J. Braunstein, and C.W. Schindler. 2002. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285(1–2): 1–24.

    Article  CAS  PubMed  Google Scholar 

  18. Lim, W.A., and T. Pawson. 2010. Phosphotyrosine signaling: Evolving a new cellular communication system. Cell 142(5): 661–667. doi:10.1016/j.cell.2010.08.023.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Vinkemeier, U., I. Moarefi, J.E. Darnell Jr., and J. Kuriyan. 1998. Structure of the amino-terminal protein interaction domain of STAT-4. Science 279(5353): 1048–1052.

    Article  CAS  PubMed  Google Scholar 

  20. Vinkemeier, U., S.L. Cohen, I. Moarefi, B.T. Chait, J. Kuriyan, and J.E. Darnell Jr. 1996. DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: Interaction between NH2-terminal domains stabilizes binding of two dimers to tandem DNA sites. The EMBO Journal 15(20): 5616–5626.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Murphy, T.L., E.D. Geissal, J.D. Farrar, and K.M. Murphy. 2000. Role of the Stat4 N domain in receptor proximal tyrosine phosphorylation. Molecular and Cellular Biology 20(19): 7121–7131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Strehlow, I., and C. Schindler. 1998. Amino-terminal signal transducer and activator of transcription (STAT) domains regulate nuclear translocation and STAT deactivation. The Journal of Biological Chemistry 273(43): 28049–28056.

    Article  CAS  PubMed  Google Scholar 

  23. Collum, R.G., S. Brutsaert, G. Lee, and C. Schindler. 2000. A Stat3-interacting protein (StIP1) regulates cytokine signal transduction. Proceedings of the National Academy of Sciences of the United States of America 97(18): 10120–10125. doi:10.1073/pnas.170192197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Zhu, M., S. John, M. Berg, and W.J. Leonard. 1999. Functional association of Nmi with Stat5 and Stat1 in IL-2- and IFN gamma-mediated signaling. Cell 96(1): 121–130.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, T., W.H. Kee, K.T. Seow, W. Fung, and X. Cao. 2000. The coiled-coil domain of Stat3 is essential for its SH2 domain-mediated receptor binding and subsequent activation induced by epidermal growth factor and interleukin-6. Molecular and Cellular Biology 20(19): 7132–7139.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Begitt, A., T. Meyer, M. van Rossum, and U. Vinkemeier. 2000. Nucleocytoplasmic translocation of Stat1 is regulated by a leucine-rich export signal in the coiled-coil domain. Proceedings of the National Academy of Sciences of the United States of America 97(19): 10418–10423. doi:10.1073/pnas.190318397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yang, E., Z. Wen, R.L. Haspel, J.J. Zhang, and J.E. Darnell Jr. 1999. The linker domain of Stat1 is required for gamma interferon-driven transcription. Molecular and Cellular Biology 19(7): 5106–5112.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Barahmand-Pour, F., A. Meinke, B. Groner, and T. Decker. 1998. Jak2-Stat5 interactions analyzed in yeast. The Journal of Biological Chemistry 273(20): 12567–12575.

    Article  CAS  PubMed  Google Scholar 

  29. Gupta, S., H. Yan, L.H. Wong, S. Ralph, J. Krolewski, and C. Schindler. 1996. The SH2 domains of Stat1 and Stat2 mediate multiple interactions in the transduction of IFN-alpha signals. The EMBO Journal 15(5): 1075–1084.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Park, C., M.J. Lecomte, and C. Schindler. 1999. Murine Stat2 is uncharacteristically divergent. Nucleic Acids Research 27(21): 4191–4199.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Matsukawa, A. 2007. STAT proteins in innate immunity during sepsis: Lessons from gene knockout mice. Acta Medica Okayama 61(5): 239–245.

    CAS  PubMed  Google Scholar 

  32. Rawlings, J.S., K.M. Rosler, and D.A. Harrison. 2004. The JAK/STAT signaling pathway. Journal of Cell Science 117(Pt 8): 1281–1283. doi:10.1242/jcs.00963.

    Article  CAS  PubMed  Google Scholar 

  33. Parganas, E., D. Wang, D. Stravopodis, D.J. Topham, J.C. Marine, S. Teglund, et al. 1998. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93(3): 385–395.

    Article  CAS  PubMed  Google Scholar 

  34. Neubauer, H., A. Cumano, M. Muller, H. Wu, U. Huffstadt, and K. Pfeffer. 1998. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93(3): 397–409.

    Article  CAS  PubMed  Google Scholar 

  35. Meraz, M.A., J.M. White, K.C. Sheehan, E.A. Bach, S.J. Rodig, A.S. Dighe, et al. 1996. Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84(3): 431–442.

    Article  CAS  PubMed  Google Scholar 

  36. Yoshimura, A., H. Nishinakamura, Y. Matsumura, and T. Hanada. 2005. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Research & Therapy 7(3): 100–110. doi:10.1186/ar1741.

    Article  CAS  Google Scholar 

  37. Liongue, C., and A.C. Ward. 2013. Evolution of the JAK-STAT pathway. Jak-Stat 2(1): e22756. doi:10.4161/jkst.22756.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Paracha, R.Z., J. Ahmad, A. Ali, R. Hussain, U. Niazi, S.H. Tareen, et al. 2014. Formal modelling of toll like receptor 4 and JAK/STAT signalling pathways: Insight into the roles of SOCS-1, interferon-beta and proinflammatory cytokines in sepsis. PloS One 9(9): e108466. doi:10.1371/journal.pone.0108466.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Hui, L., Y. Yao, S. Wang, Y. Yu, N. Dong, H. Li, et al. 2009. Inhibition of Janus kinase 2 and signal transduction and activator of transcription 3 protect against cecal ligation and puncture-induced multiple organ damage and mortality. The Journal of Trauma 66(3): 859–865. doi:10.1097/TA.0b013e318164d05f.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, W., Q. Sun, X. Gao, Y. Jiang, R. Li, and J. Ye. 2013. Anti-inflammation of spirocyclopiperazinium salt compound LXM-10 targeting alpha7 nAChR and M4 mAChR and inhibiting JAK2/STAT3 pathway in rats. PloS One 8(6): e66895. doi:10.1371/journal.pone.0066895.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pena, G., B. Cai, E.A. Deitch, and L. Ulloa. 2010. JAK2 inhibition prevents innate immune responses and rescues animals from sepsis. Journal of Molecular Medicine 88(8): 851–859. doi:10.1007/s00109-010-0628-z.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Pena, G., B. Cai, J. Liu, E.P. van der Zanden, E.A. Deitch, W.J. de Jonge, et al. 2010. Unphosphorylated STAT3 modulates alpha 7 nicotinic receptor signaling and cytokine production in sepsis. European Journal of Immunology 40(9): 2580–2589. doi:10.1002/eji.201040540.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Greenhill, C.J., S. Rose-John, R. Lissilaa, W. Ferlin, M. Ernst, P.J. Hertzog, et al. 2011. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3. Journal of Immunology 186(2): 1199–1208. doi:10.4049/jimmunol.1002971.

    Article  CAS  Google Scholar 

  44. Riley, J.K., K. Takeda, S. Akira, and R.D. Schreiber. 1999. Interleukin-10 receptor signaling through the JAK-STAT pathway. Requirement for two distinct receptor-derived signals for anti-inflammatory action. The Journal of Biological Chemistry 274(23): 16513–16521.

    Article  CAS  PubMed  Google Scholar 

  45. Rodig, S.J., M.A. Meraz, J.M. White, P.A. Lampe, J.K. Riley, C.D. Arthur, et al. 1998. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93(3): 373–383.

    Article  CAS  PubMed  Google Scholar 

  46. Takeda, K., B.E. Clausen, T. Kaisho, T. Tsujimura, N. Terada, I. Forster, et al. 1999. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10(1): 39–49.

    Article  CAS  PubMed  Google Scholar 

  47. Matsukawa, A., K. Takeda, S. Kudo, T. Maeda, M. Kagayama, and S. Akira. 2003. Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. Journal of Immunology 171(11): 6198–6205.

    Article  CAS  Google Scholar 

  48. Triantafilou, M., and K. Triantafilou. 2002. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends in Immunology 23(6): 301–304.

    Article  CAS  PubMed  Google Scholar 

  49. Rahimi, A.A., K. Gee, S. Mishra, W. Lim, and A. Kumar. 2005. STAT-1 mediates the stimulatory effect of IL-10 on CD14 expression in human monocytic cells. Journal of Immunology 174(12): 7823–7832.

    Article  CAS  Google Scholar 

  50. Kamezaki, K., K. Shimoda, A. Numata, T. Matsuda, K. Nakayama, and M. Harada. 2004. The role of Tyk2, Stat1 and Stat4 in LPS-induced endotoxin signals. International Immunology 16(8): 1173–1179. doi:10.1093/intimm/dxh118.

    Article  CAS  PubMed  Google Scholar 

  51. Herzig, D., G. Fang, T.E. Toliver-Kinsky, Y. Guo, J. Bohannon, and E.R. Sherwood. 2012. STAT1-deficient mice are resistant to cecal ligation and puncture-induced septic shock. Shock 38(4): 395–402. doi:10.1097/SHK.0b013e318265a2ab.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Dell’Albani, P., R. Santangelo, L. Torrisi, V.G. Nicoletti, J. de Vellis, and A.M. Giuffrida Stella. 2001. JAK/STAT signaling pathway mediates cytokine-induced iNOS expression in primary astroglial cell cultures. Journal of Neuroscience Research 65(5): 417–424.

    Article  PubMed  Google Scholar 

  53. Stempelj, M., M. Kedinger, L. Augenlicht, and L. Klampfer. 2007. Essential role of the JAK/STAT1 signaling pathway in the expression of inducible nitric-oxide synthase in intestinal epithelial cells and its regulation by butyrate. The Journal of Biological Chemistry 282(13): 9797–9804. doi:10.1074/jbc.M609426200.

    Article  CAS  PubMed  Google Scholar 

  54. Hong, J., S. Sang, H.J. Park, S.J. Kwon, N. Suh, M.T. Huang, et al. 2006. Modulation of arachidonic acid metabolism and nitric oxide synthesis by garcinol and its derivatives. Carcinogenesis 27(2): 278–286. doi:10.1093/carcin/bgi208.

    Article  CAS  PubMed  Google Scholar 

  55. Tsoyi, K., H.J. Kim, J.S. Shin, D.H. Kim, H.J. Cho, S.S. Lee, et al. 2008. HO-1 and JAK-2/STAT-1 signals are involved in preferential inhibition of iNOS over COX-2 gene expression by newly synthesized tetrahydroisoquinoline alkaloid, CKD712, in cells activated with lipopolysacchride. Cellular Signalling 20(10): 1839–1847. doi:10.1016/j.cellsig.2008.06.012.

    Article  CAS  PubMed  Google Scholar 

  56. Tsoyi, K., I.T. Nizamutdinova, H.J. Jang, L. Mun, H.J. Kim, H.G. Seo, et al. 2010. Carbon monoxide from CORM-2 reduces HMGB1 release through regulation of IFN-beta/JAK2/STAT-1/INOS/NO signaling but not COX-2 in TLR-activated macrophages. Shock 34(6): 608–614. doi:10.1097/SHK.0b013e3181e46f15.

    Article  CAS  PubMed  Google Scholar 

  57. Riedemann, N.C., T.A. Neff, R.F. Guo, K.D. Bernacki, I.J. Laudes, J.V. Sarma, et al. 2003. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression. Journal of Immunology 170(1): 503–507.

    Article  CAS  Google Scholar 

  58. Riedemann, N.C., R.F. Guo, T.J. Hollmann, H. Gao, T.A. Neff, J.S. Reuben, et al. 2004. Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 18(2): 370–372. doi:10.1096/fj.03-0708fje.

    CAS  Google Scholar 

  59. Kimura, A., T. Naka, T. Muta, O. Takeuchi, S. Akira, I. Kawase, et al. 2005. Suppressor of cytokine signaling-1 selectively inhibits LPS-induced IL-6 production by regulating JAK-STAT. Proceedings of the National Academy of Sciences of the United States of America 102(47): 17089–17094. doi:10.1073/pnas.0508517102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Matsukawa, A., M.H. Kaplan, C.M. Hogaboam, N.W. Lukacs, and S.L. Kunkel. 2001. Pivotal role of signal transducer and activator of transcription (Stat)4 and Stat6 in the innate immune response during sepsis. The Journal of Experimental Medicine 193(6): 679–688.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Lentsch, A.B.., A. Kato, B. Davis, W. Wang, C. Chao, and M.J. Edwards. 2001. STAT4 and STAT6 regulate systemic inflammation and protect against lethal endotoxemia. The Journal of Clinical Investigation 108(10): 1475–1482. doi:10.1172/JCI13763.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Gurniak, C.B., and L.J. Berg. 1996. Murine JAK3 is preferentially expressed in hematopoietic tissues and lymphocyte precursor cells. Blood 87(8): 3151–3160.

    CAS  PubMed  Google Scholar 

  63. Verbsky, J.W., E.A. Bach, Y.F. Fang, L. Yang, D.A. Randolph, and L.E. Fields. 1996. Expression of Janus kinase 3 in human endothelial and other non-lymphoid and non-myeloid cells. The Journal of Biological Chemistry 271(24): 13976–13980.

    Article  CAS  PubMed  Google Scholar 

  64. Aird, W.C. 2003. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101(10): 3765–3777. doi:10.1182/blood-2002-06-1887.

    Article  CAS  PubMed  Google Scholar 

  65. Lee, J.E., A.S. Lee, D.H. Kim, Y.J. Jung, S. Lee, B.H. Park, et al. 2012. Janex-1, a JAK3 inhibitor, ameliorates tumor necrosis factor-alpha-induced expression of cell adhesion molecules and improves myocardial vascular permeability in endotoxemic mice. International Journal of Molecular Medicine 29(5): 864–870. doi:10.3892/ijmm.2012.920.

    CAS  PubMed  Google Scholar 

  66. Wang, H., O. Bloom, M. Zhang, J.M. Vishnubhakat, M. Ombrellino, J. Che, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425): 248–251.

    Article  CAS  PubMed  Google Scholar 

  67. Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R.K. Tuominen, et al. 2004. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104(4): 1174–1182. doi:10.1182/blood-2003-10-3536.

    Article  CAS  PubMed  Google Scholar 

  68. Andersson, U., H. Wang, K. Palmblad, A.C. Aveberger, O. Bloom, H. Erlandsson-Harris, et al. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. The Journal of Experimental Medicine 192(4): 565–570.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Kim, J.H., S.J. Kim, I.S. Lee, M.S. Lee, S. Uematsu, S. Akira, et al. 2009. Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-beta signaling pathway. Journal of Immunology 182(4): 2458–2466. doi:10.4049/jimmunol.0801364.

    Article  CAS  Google Scholar 

  70. Liu, H., Y.M. Yao, Y. Yu, N. Dong, H.N. Yin, and Z.Y. Sheng. 2007. Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression and inflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock 27(1): 55–60. doi:10.1097/01.shk.0000233197.40989.31.

    Article  PubMed  Google Scholar 

  71. Lu, B., D.J. Antoine, K. Kwan, P. Lundback, H. Wahamaa, H. Schierbeck, et al. 2014. JAK/STAT1 signaling promotes HMGB1 hyperacetylation and nuclear translocation. Proceedings of the National Academy of Sciences of the United States of America 111(8): 3068–3073. doi:10.1073/pnas.1316925111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This article is supported by the National Natural Science Foundation of China (grant no. 81160235).

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Cai, Jp., Luo, Yl. et al. The Specific Roles of JAK/STAT Signaling Pathway in Sepsis. Inflammation 38, 1599–1608 (2015). https://doi.org/10.1007/s10753-015-0135-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-015-0135-z

KEY WORDS

Navigation