Skip to main content

Advertisement

Log in

Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Lipopolysaccharide was found to be elevated in the plasma of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD) patients and may play an important role in the pathogenesis and propagation of these intestinal diseases. To illustrate the destructive effect of lipopolysaccharide (LPS) and to test the protective effect of 1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) on LPS-induced barrier injury, an in vitro intestinal epithelia barrier model was established with Caco-2 monolayers and treated with clinically relevant concentrations (1–10 ng/ml) of LPS with or without 1,25(OH)2D3. Transepithelial electrical resistance (TEER) and FITC-Dextran 40kda (FD-40) flux were measured to reflect monolayer permeability. We found that LPS at clinically relevant concentrations increased intestinal permeability by downregulating and redistributing tight junction (TJ) proteins. 1,25(OH)2D3 added at baseline or at day 4 abrogated the destructive effect of LPS on monolayer permeability by restoring the expression and localization of TJ proteins. LPS, at clinically relevant concentrations, also downregulated the expression of vitamin D receptor (VDR); 1,25 (OH)2D3, however, could restore the expression of VDR. Our findings illustrate the mechanism underlying the destructive effect of clinically relevant concentrations of LPS on intestinal TJ barrier and provide evidence for the clinical application of vitamin D in LPS-related intestinal barrier dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Turner, J.R. 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews Immunology 9(11): 799–809.

    Article  CAS  PubMed  Google Scholar 

  2. Clark, J.A., S.M. Doelle, M.D. Halpern, T.A. Saunders, H. Holubec, K. Dvorak, S.A. Boitano, and B. Dvorak. 2006. Intestinal barrier failure during experimental necrotizing enterocolitis: protective effect of EGF treatment. American Journal of Physiology. Gastrointestinal and Liver Physiology 291(5): G938–G949.

    Article  CAS  PubMed  Google Scholar 

  3. Arrieta, M.C., K. Madsen, J. Doyle, and J. Meddings. 2009. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58(1): 41–48.

    Article  CAS  PubMed  Google Scholar 

  4. Berman, L., and R.L. Moss. 2011. Necrotizing enterocolitis: an update. Seminars in Fetal and Neonatal Medicine 16(3): 145–150.

    Article  PubMed  Google Scholar 

  5. Mennigen, R., K. Nolte, E. Rijcken, M. Utech, B. Loeffler, N. Senninger, and M. Bruewer. 2009. Probiotic mixture VSL#3 protects the epithelial barrier by maintaining tight junction protein expression and preventing apoptosis in a murine model of colitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 296(5): G1140–G1149.

    Article  CAS  PubMed  Google Scholar 

  6. Ammori, B.J., P.C. Leeder, R.F. King, G.R. Barclay, I.G. Martin, M. Larvin, and M.J. McMahon. 1999. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. Journal of gastrointestinal surgery: official journal of the Society for Surgery of the Alimentary Tract 3(3): 252–262.

    Article  CAS  Google Scholar 

  7. Marshall, J.C., P.M. Walker, D.M. Foster, D. Harris, M. Ribeiro, J. Paice, A.D. Romaschin, and A.N. Derzko. 2002. Measurement of endotoxin activity in critically ill patients using whole blood neutrophil dependent chemiluminescence. Critical Care (London, England) 6(4): 342–348.

    Article  Google Scholar 

  8. Guo, S., R. Al-Sadi, H.M. Said, and T.Y. Ma. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. The American Journal of Pathology 182(2): 385–388.

    Article  Google Scholar 

  9. Kong, J., Z. Zhang, M.W. Musch, G. Ning, J. Sun, J. Hart, M. Bissonnette, and Y.C. Li. 2008. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology 294(1): G208–G216.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, W., Y. Chen, M.A. Golan, M.L. Annunziata, J. Du, U. Dougherty, J. Kong, M. Musch, Y. Huang, J. Pekow, C. Zheng, M. Bissonnette, S.B. Hanauer, and Y.C. Li. 2013. Intestinal epithelial vitamin D receptor signaling inhibits experimental colitis. The Journal of Clinical Investigation 123(9): 3983–3996.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zhao, H., H. Zhang, H. Wu, H. Li, L. Liu, J. Guo, C. Li, D.Q. Shih, and X. Zhang. 2012. Protective role of 1,25(OH)2 vitamin D3 in the mucosal injury and epithelial barrier disruption in DSS-induced acute colitis in mice. BMC Gastroenterology 12: 58.

    Article  Google Scholar 

  12. Ye, D., S. Guo, R. Al-Sadi, and T.Y. Ma. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141(4): 1323–1333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Xu, L.F., X. Teng, J. Guo, and M. Sun. 2012. Protective effect of intestinal trefoil factor on injury of intestinal epithelial tight junction induced by platelet activating factor. Inflammation 35(1): 308–315.

    Article  CAS  PubMed  Google Scholar 

  14. Puthia, M.K., S.W. Sio, J. Lu, and K.S. Tan. 2006. Blastocystis ratti induces contact-independent apoptosis, F-actin rearrangement, and barrier function disruption in IEC-6 cells. Infection and Immunity 74(7): 4114–4123.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Ma, T.Y., N. Hoa, D. Tran, V. Bui, A. Pedram, S. Mills, and M. Merryfield. 2000. Cytochalasin B modulation of Caco-2 tight junction barrier: role of myosin light chain kinase. American Journal of Physiology. Gastrointestinal and Liver Physiology 279(5): G875–G885.

    CAS  PubMed  Google Scholar 

  16. Ma, T.Y., D. Nguyen, V. Bui, H. Nguyen, and N. Hoa. 1999. Ethanol modulation of intestinal epithelial tight junction barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology 276(4 Pt 1): G965–G974.

    CAS  Google Scholar 

  17. Qiu, B., G. Zhao, Y. Aoki, L. Shi, A. Uyei, S. Nazarian, J.C. Ng, and P.N. Kao. 1999. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. The Journal of Biological Chemistry 274(19): 13443–13450.

    Article  CAS  PubMed  Google Scholar 

  18. Schlegel, N., M. Meir, V. Spindler, C.T. Germer, and J. Waschke. 2011. Differential role of RhoGTPases in intestinal epithelial barrier regulation in vitro. Journal of Cellular Physiology 226(5): 1196–1203.

    Article  CAS  PubMed  Google Scholar 

  19. Schliwa, M. 1982. Action of cytochalasin D on cytoskeletal networks. The Journal of Cell Biology 92(1): 79–91.

    Article  CAS  PubMed  Google Scholar 

  20. Ma, T.Y., G.K. Iwamoto, N.T. Hoa, V. Akotia, A. Pedram, M.A. Boivin, and H.M. Said. 2004. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. American journal of physiology Gastrointestinal and Liver Physiology 286(3): G367–G376.

    Article  CAS  PubMed  Google Scholar 

  21. Andreasen, A.S., K.S. Krabbe, R. Krogh-Madsen, S. Taudorf, B.K. Pedersen, and K. Moller. 2008. Human endotoxemia as a model of systemic inflammation. Current Medical Chemistry 15(17): 1697–1705.

    Article  CAS  Google Scholar 

  22. Sharma, R., J.J. Tepas 3rd, M.L. Hudak, D.L. Mollitt, P.S. Wludyka, R.J. Teng, and B.R. Premachandra. 2007. Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. Journal of Pediatric Surgery 42(3): 454–461.

    Article  PubMed  Google Scholar 

  23. Lambert, G.P. 2008. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Medicine and Sport Science 53: 61–73.

    Article  PubMed  Google Scholar 

  24. Gardiner, K.R., M.I. Halliday, G.R. Barclay, L. Milne, D. Brown, S. Stephens, R.J. Maxwell, and B.J. Rowlands. 1995. Significance of systemic endotoxaemia in inflammatory bowel disease. Gut 36(6): 897–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Pastor Rojo, O., A. Lopez San Roman, E. Albeniz Arbizu, A. de la Hera Martinez, E. Ripoll Sevillano, and A. Albillos Martinez. 2007. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflammatory Bowel Disease 13(3): 269–277.

    Article  Google Scholar 

  26. Poritz, L.S., K.I. Garver, C. Green, L. Fitzpatrick, F. Ruggiero, and W.A. Koltun. 2007. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. The Journal of Surgical Research 140: 12–19.

    Article  CAS  PubMed  Google Scholar 

  27. Camilleri, M., K. Madsen, R. Spiller, B. Greenwood-Van Meerveld, and G.N. Verne. 2012. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterology and Motility: the Official Journal of the European Gastrointestinal Motility Society 24(6): 503–512.

    Article  CAS  Google Scholar 

  28. Wu, S., A.P. Liao, Y. Xia, Y.C. Li, J.D. Li, R.B. Sartor, and J. Sun. 2010. Vitamin D receptor negatively regulates bacterial-stimulated NF-kappaB activity in intestine. The American Journal of Pathology 177(2): 686–697.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Loftus Jr., E.V. 2004. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6): 1504–1517.

    Article  PubMed  Google Scholar 

  30. Lim, W.C., S.B. Hanauer, and Y.C. Li. 2005. Mechanisms of disease: vitamin D and inflammatory bowel disease. Nature clinical practice. Gastroenterology and Hepatology 2(7): 308–315.

    Article  CAS  PubMed  Google Scholar 

  31. Haussler, M.R., G.K. Whitfield, C.A. Haussler, J.C. Hsieh, P.D. Thompson, S.H. Selznick, C.E. Dominguez, and P.W. Jurutka. 1998. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. Journal of Bone and Mineral Research 13(3): 325–349.

    Article  CAS  PubMed  Google Scholar 

  32. Wu S, Zhang YG, Lu R, Xia Y, Zhou D, Petrof EO, Claud EC, Chen D, Chang EB, Carmeliet G, Sun J. 2014. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut.

  33. Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. 2014. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. The Journal of Infectious Diseases.

Download references

Acknowledgments

We thank Professor Xiu-wei Yang for offering several instruments, Ding-fang Bu for the excellent technical assistance for TEER assay, and Jie Meng for the language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-sheng Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Sw., Wang, Py., Zhu, J. et al. Protective Effect of 1,25-Dihydroxyvitamin D3 on Lipopolysaccharide-Induced Intestinal Epithelial Tight Junction Injury in Caco-2 Cell Monolayers. Inflammation 38, 375–383 (2015). https://doi.org/10.1007/s10753-014-0041-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-014-0041-9

KEY WORDS

Navigation