Skip to main content

Advertisement

Log in

Thymol Inhibits LPS-Stimulated Inflammatory Response via Down-Regulation of NF-κB and MAPK Signaling Pathways in Mouse Mammary Epithelial Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Thymol is a natural monoterpene phenol primarily found in thyme, oregano, and tangerine peel. It has been shown to possess anti-inflammatory property both in vivo and in vitro. In the present paper, we studied the anti-inflammatory effect of thymol in lipopolysaccharide (LPS)-stimulated mouse mammary epithelial cells (mMECs). The mMECs were stimulated with LPS in the presence or absence of thymol (10, 20, 40 μg/mL). The concentrations of tumor necrosis factor α (TNF-α), interleukin (IL)-6, and IL-1β in the supernatants of culture were determined using enzyme-linked immunosorbent assay. Cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), nuclear factor-κB (NF-κB), and inhibitor protein of NF-κB (IκBα) were measured using western blot. The results showed that thymol markedly inhibited the production of TNF-α and IL-6 in LPS-stimulated mMECs. The expression of iNOS and COX-2 was also suppressed by thymol in a dose-dependent manner. Furthermore, thymol blocked the phosphorylation of IκBα, NF-κB p65, ERK, JNK, and p38 mitogen-activated protein kinases (MAPKs) in LPS-stimulated mMECs. These results indicate that thymol exerted anti-inflammatory property in LPS-stimulated mMECs by interfering the activation of NF-κB and MAPK signaling pathways. Thereby, thymol may be a potential therapeutic agent against mastitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Asagiri, M., T. Hirai, T. Kunigami, S. Kamano, and H.J. Gober. 2008. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science 319: 624–627.

    Article  CAS  PubMed  Google Scholar 

  2. Strandberg, Y., C. Gray, T. Vuocolo, L. Donaldson, M. Broadway, and R. Tellam. 2005. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells. Cytokine 31: 72–86.

    Article  CAS  PubMed  Google Scholar 

  3. Scull, C.M., W.D. Hays, and T.H. Fischer. 2010. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J Inflamm (Lond) 7: 53.

    Article  Google Scholar 

  4. Vangroenweghe, F., P. Rainard, M. Paape, L. Duchateau, and C. Burvenich. 2004. Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. Journal of Dairy Science 87: 4132–4144.

    Article  CAS  PubMed  Google Scholar 

  5. Burvenich, C., V. Van Merris, J. Mehrzad, A. Diez-Fraile, and L. Duchateau. 2003. Severity of E. coli mastitis is mainly determined by cow factors. Journal of Dairy Science 34: 521–564.

    Google Scholar 

  6. Rainard, P., and C. Riollet. 2006. Innate immunity of the bovine mammary gland. Veterinary Research 37: 369–400.

    Article  CAS  PubMed  Google Scholar 

  7. Lahouassa, H., E. Moussay, P. Rainard, and C. Riollet. 2007. Differential cytokine and chemokine responses of bovine mammary epithelial cells to Staphylococcus aureus and Escherichia coli. Cytokine 38: 12–21.

    Article  CAS  PubMed  Google Scholar 

  8. Schmitz, S., M.W. Pfaffl, H.H. Meyer, and R.M. Bruckmaier. 2004. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domest Anim Endocrinology 26: 111–126.

    Article  CAS  Google Scholar 

  9. Chen, C.C., Y.T. Sun, J.J. Chen, and Y.J. Chang. 2001. Tumor necrosis factor-alpha-induced cyclooxygenase-2 expression via sequential activation of ceramide-dependent mitogen-activated protein kinases, and IkappaB kinase 1/2 in human alveolar epithelial cells. Molecular Pharmacology 59: 493–500.

    Article  CAS  PubMed  Google Scholar 

  10. Boulanger, V., L. Bouchard, X. Zhao, and P. Lacasse. 2001. Induction of nitric oxide production by bovine mammary epithelial cells and blood leukocytes. Journal of Dairy Science 84: 1430–1437.

    Article  CAS  PubMed  Google Scholar 

  11. Karin, M., and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: The control of NF-κB activity. Annual Review of Immunology 18: 621–663.

    Article  CAS  PubMed  Google Scholar 

  12. Wilson, S.J., B.A. Leone, D. Anderson, A. Manning, and S.T. Holgate. 1999. Immunohistochemical analysis of the activation of NF-kappaB and expression of associated cytokines and adhesion molecules in human models of allergic inflammation. The Journal of Pathology 189: 265–272.

    Article  CAS  PubMed  Google Scholar 

  13. Baeuerle, P.A. 1998. Pro-inflammatory signaling: Last pieces in the NF-kappaB puzzle? Current Biology 8: R19–R22.

    Article  CAS  PubMed  Google Scholar 

  14. Han, J., J.D. Lee, L. Bibbs, and R.J. Ulevitch. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265: 808–811.

    Article  CAS  PubMed  Google Scholar 

  15. Li, D., Y. Fu, W. Zhang, G. Su, and B. Liu. 2013. Salidroside attenuates inflammatory responses by suppressing nuclear factor-kappaB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflammation Research 62: 9–15.

    Article  CAS  PubMed  Google Scholar 

  16. Fengyang, L., F. Yunhe, L. Bo, L. Zhicheng, L. Depeng, and L. Dejie. 2012. Stevioside Suppressed inflammatory cytokine secretion by downregulation of NF-κB and MAPK signaling pathways in LPS-stimulated RAW264. 7 cells. Inflammation 35: 1669–1675.

    Article  PubMed  Google Scholar 

  17. Aeschbach, R., J. Loliger, B.C. Scott, A. Murcia, and J. Butler. 1994. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and Chemical Toxicology 32: 31–36.

    Article  CAS  PubMed  Google Scholar 

  18. Robledo, S., E. Osorio, D. Muñoz, L.M. Jaramillo, and A. Restrepo. 2005. In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Antimicrobial Agents and Chemotherapy 49: 1652–1655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ocana-Fuentes, A., E. Arranz-Gutierrez, F.J. Senorans, and G. Reglero. 2010. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: Anti-inflammatory properties based on cytokine response on THP-1 macrophages. Food and Chemical Toxicology 48: 1568–1575.

    Article  CAS  PubMed  Google Scholar 

  20. Fachini-Queiroz FC, Kummer R, Estevao-Silva CF, Carvalho MD, and Cunha JM. 2012. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evidence-Based Complementary and Alternative Medicine 2012: 657026.

  21. Dhaneshwar, S., V. Patel, D. Patil, and G. Meena. 2013. Studies on synthesis, stability, release and pharmacodynamic profile of a novel diacerein-thymol prodrug. Bioorganic & Medicinal Chemistry Letters 23: 55–61.

    Article  CAS  Google Scholar 

  22. Smalley, M.J. 2010. Isolation, culture and analysis of mouse mammary epithelial cells. Methods in Molecular Biology 633: 139–170.

    Article  CAS  PubMed  Google Scholar 

  23. Guha, M., and N. Mackman. 2001. LPS induction of gene expression in human monocytes. Cellular Signalling 13: 85–94.

    Article  CAS  PubMed  Google Scholar 

  24. Nair, M.K., J. Joy, P. Vasudevan, L. Hinckley, T.A. Hoagland, and K.S. Venkitanarayanan. 2005. Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. Journal of Dairy Science 88: 3488–3495.

    Article  CAS  PubMed  Google Scholar 

  25. Stadnyk, A. 1994. Cytokine production by epithelial cells. The FASEB Journal 8: 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  26. Aggarwal, B.B. 2003. Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews Immunology 3: 745–756.

    Article  CAS  PubMed  Google Scholar 

  27. Miao, J., Y. Fa, B. Gu, W. Zhu, and S. Zou. 2012. Taurine attenuates lipopolysaccharide-induced disfunction in mouse mammary epithelial cells. Cytokine 59: 35–40.

    Article  CAS  PubMed  Google Scholar 

  28. Surh, Y.J., K.S. Chun, H.H. Cha, S.S. Han, Y.S. Keum, and K.K. Park. 2006. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: Down-regulation of COX-2 and iNOS through suppression of NF-κB activation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 480: 243–268.

    Google Scholar 

  29. Britten, N.J., Waldron, N.A., Watts, J.L., and Hallberg, J.W. 2003. Cyclooxygenase-2 inhibitor and antibacterial agent combination for intramammary treatment of mastitis, Google Patents, 2003.

  30. Trakranrungsie, N., and J. Will. 1997. Expression of iNOS and COX-2 proteins during endotoxin-induced mastitis in guinea pigs. FASEB Journal 11(3): 1829.

    Google Scholar 

  31. Cao, X.Y., M. Dong, J.Z. Shen, B.B. Wu, C.M. Wu, and X.D. Du. 2006. Tilmicosin and tylosin have anti-inflammatory properties via modulation of COX-2 and iNOS gene expression and production of cytokines in LPS-induced macrophages and monocytes. International Journal of Antimicrobial Agents 27: 431–438.

    Article  CAS  PubMed  Google Scholar 

  32. Ogiwara, T. 2005. Radical scavenging activity of phenol, m-cresol and thymol and their cytotoxicity. Journal of Meikai University School of Dentistry 33: 199–208.

    Google Scholar 

  33. Marsik, P., L. Kokoska, P. Landa, A. Nepovim, P. Soudek, and T. Vanek. 2005. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1-and-2-catalyzed prostaglandin E2 biosyntheses. Planta Medica 71: 739–742.

    Article  CAS  PubMed  Google Scholar 

  34. Akira, S., and K. Takeda. 2004. Toll-like receptor signalling. Nature Reviews Immunology 4: 499–511.

    Article  CAS  PubMed  Google Scholar 

  35. Gomez, P.F., M.H. Pillinger, M. Attur, N. Marjanovic, and M. Dave. 2005. Resolution of inflammation: Prostaglandin E2 dissociates nuclear trafficking of individual NF-kappaB subunits (p65, p50) in stimulated rheumatoid synovial fibroblasts. The Journal of Immunology 175: 6924–6930.

    Article  CAS  PubMed  Google Scholar 

  36. Yadav, P.N., Z. Liu, and M.M. Rafi. 2003. A diarylheptanoid from lesser galangal (Alpinia officinarum) inhibits proinflammatory mediators via inhibition of mitogen-activated protein kinase, p44/42, and transcription factor nuclear factor-kappa B. Journal of Pharmacology and Experimental Therapeutics 305: 925–931.

    Article  CAS  Google Scholar 

  37. Chun, S.C., S.Y. Jee, S.G. Lee, S.J. Park, and J.R. Lee. 2007. Anti-inflammatory activity of the methanol extract of Moutan cortex in LPS-activated Raw264.7 cells. Evidence-Based Complementary and Alternative Medicine 4: 327–333.

    Article  PubMed  Google Scholar 

  38. Bouwmeester, T., A. Bauch, H. Ruffner, P.O. Angrand, and G. Bergamini. 2004. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nature Cell Biology 6: 97–105.

    Article  CAS  PubMed  Google Scholar 

  39. Richmond, A. 2002. NF-κB, chemokine gene transcription and tumour growth. Nature Reviews Immunology 2: 664–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, D., Y. Fu, W. Zhang, G. Su, B. Liu, and M. Guo. 2013. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflammation Research 62: 9–15.

    Article  CAS  PubMed  Google Scholar 

  41. Li, D., N. Zhang, Y. Cao, W. Zhang, and G. Su. 2013. Emodin ameliorates lipopolysaccharide-induced mastitis in mice by inhibiting activation of NF-kappaB and MAPKs signal pathways. European Journal of Pharmacology 705: 79–85.

    Article  CAS  PubMed  Google Scholar 

  42. Guo, M., N. Zhang, D. Li, D. Liang, and Z. Liu. 2013. Baicalin plays an anti-inflammatory role through reducing nuclear factor-kappaB and p38 phosphorylation in S. aureus-induced mastitis. International Immunopharmacology 16: 125–130.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (no. 31272622 and no. 3120195) and the Research Fund for the Doctoral Program of Higher Education of China (no. 20110061130010 and 20120061120098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengtao Yang or Naisheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, D., Li, F., Fu, Y. et al. Thymol Inhibits LPS-Stimulated Inflammatory Response via Down-Regulation of NF-κB and MAPK Signaling Pathways in Mouse Mammary Epithelial Cells. Inflammation 37, 214–222 (2014). https://doi.org/10.1007/s10753-013-9732-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9732-x

KEY WORDS

Navigation