Skip to main content

Advertisement

Log in

Sca-1-Positive Cardiac Stem Cell migration in a Cardiac Infarction Model

  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 12 August 2020

This article has been updated

Abstract

Adult myocardium has the capacity for repair and regeneration, which is derived from cardiac stem cells (CSCs). In this study, we assessed the migration and changes in numbers of Sca-1-positive CSCs after myocardial infarction (MI) in vivo and in vitro. In this study, we showed that in a rat MI model the CSCs emerged around the vessels near the peri-infarct zone and in the epicardium of the infarcted area. Four weeks after infarction, no differences in the expression of connexin 43 (Cx43) were observed in the peri-infarct and infarct zones. In vitro, we mimicked tissue ischemia and hypoxia by using a culture environment of 5 % O2 and a wound healing assay to monitor the migration of CSCs. In conclusion, under hypoxic conditions, the CSCs, conveyed by blood vessels, migrated from the niche to the infarct zone for repairing the damaged myocytes. The number of endogenous migrating CSCs was proportionate to the repair time after infarction, rather than the degree of infarction. Four weeks after MI, the expression of Cx43 was not altered in migratory CSCs, namely no enhanced gap-junctional communication with cardiomyocytes was seen in the CSCs. Further studies are necessary to delineate the molecular mechanisms that drive the migration of CSCs after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 12 August 2020

    After publication of our article [1], we became aware that there were errors in Fig. 1, namely that the Echocardiographic assessment of 1w, 2w, and 4w groups was incorrectly presented.

Abbreviations

CSC:

cardiac stem cell

MI:

myocardial infarction

AMI:

acute myocardial infarction

LAD:

left anterior descending coronary artery

MACS:

magnetic cell sorting

LV:

left ventricle

LVEF:

left ventricular ejection fraction

LVFS:

left ventricular fractional shortening

Cx43:

connexin 43

References

  1. Epstein, J.A., and H. Franklin. 2010. Epstein Lecture. Cardiac development and implications for heart disease. N Engl J Med 363: 1638–1647.

    Article  PubMed  CAS  Google Scholar 

  2. Hierlihy, A.M., P. Seale, C.G. Lobe, M.A. Rudnicki, and L.A. Megeney. 2002. The post-natal heart contains a myocardial stem cell population. FEBS Lett 530: 239–243.

    Article  PubMed  CAS  Google Scholar 

  3. Linke, A., Muller, P., Nurzynska, D., Casarsa, C., Torella, D., Nascimbene, A., Castaldo, C., Cascapera, S., Bohm, M., Quaini, F., and other 5 authors. 2005. Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proceedings of the National Academy of Sciences of the United States of America 102: 8966–8971.

    Google Scholar 

  4. Matsuura, K., T. Nagai, N. Nishigaki, T. Oyama, J. Nishi, H. Wada, M. Sano, H. Toko, H. Akazawa, and T. Sato. 2004. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry 279: 11384–11391.

    Article  PubMed  CAS  Google Scholar 

  5. Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., and other 4 authors. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763–776.

    Google Scholar 

  6. Torella, D., C. Indolfi, D.F. Goldspink, and G.M. Ellison. 2008. Cardiac stem cell-based myocardial regeneration: towards a translational approach. Cardiovasc Hematol Agents Med Chem 6: 53–59.

    Article  PubMed  CAS  Google Scholar 

  7. Messina, E., L. De Angelis, G. Frati, S. Morrone, S. Chimenti, F. Fiordaliso, M. Salio, M. Battaglia, M.V.G. Latronico, and M. Coletta. 2004. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation research 95: 911–921.

    Article  PubMed  CAS  Google Scholar 

  8. Rossini, A., A. Zacheo, D. Mocini, P. Totta, A. Facchiano, R. Castoldi, P. Sordini, G. Pompilio, D. Abeni, M.C. Capogrossi, and A. Germani. 2008. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. J Mol Cell Cardiol 44: 683–693.

    Article  PubMed  CAS  Google Scholar 

  9. Rossini, A., C. Frati, C. Lagrasta, G. Graiani, A. Scopece, S. Cavalli, E. Musso, M. Baccarin, M. Di Segni, and F. Fagnoni. 2011. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovascular research 89: 650–660.

    Article  PubMed  CAS  Google Scholar 

  10. Dawn, B., A.B. Stein, K. Urbanek, M. Rota, B. Whang, R. Rastaldo, D. Torella, X.L. Tang, A. Rezazadeh, and J. Kajstura. 2005. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America 102: 3766.

    Article  PubMed  CAS  Google Scholar 

  11. Torella, D., G.M. Ellison, S. Méndez-Ferrer, B. Ibanez, and B. Nadal-Ginard. 2006. Resident human cardiac stem cells: Role in cardiac cellular homeostasis and potential for myocardial regeneration. Nature Clinical Practice Cardiovascular Medicine 3: S8–S13.

    Article  PubMed  CAS  Google Scholar 

  12. Kuang, D., X. Zhao, G. Xiao, J. Ni, Y. Feng, R. Wu, and G. Wang. 2008. Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic research in cardiology 103: 265–273.

    Article  PubMed  CAS  Google Scholar 

  13. Hochman, J.S., and B.H. Bulkley. 1982. Expansion of acute myocardial infarction: an experimental study. Circulation 65: 1446–1450.

    Article  PubMed  CAS  Google Scholar 

  14. Bearzi, C., M. Rota, T. Hosoda, J. Tillmanns, A. Nascimbene, A. De Angelis, S. Yasuzawa-Amano, I. Trofimova, R.W. Siggins, and N. LeCapitaine. 2007. Human cardiac stem cells. Proceedings of the National Academy of Sciences 104: 14068.

    Article  CAS  Google Scholar 

  15. Urbanek, K., D. Torella, F. Sheikh, A. De Angelis, D. Nurzynska, F. Silvestri, C.A. Beltrami, R. Bussani, A.P. Beltrami, and F. Quaini. 2005. Myocardial regeneration by activation of multipotent cardiac stem cells in ischemic heart failure. Proceedings of the National Academy of Sciences of the United States of America 102: 8692.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a grant from the National Natural Science Foundation of China (to B.Y., Grant No. 30871064). The authors thank Baixiang Li, Wei Liu and Hulun Li for their helps with technical assistance, and also thank Dr. Meng Sun for assistance with the statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Yu.

Additional information

J. Liu and Y. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, Y., Du, W. et al. Sca-1-Positive Cardiac Stem Cell migration in a Cardiac Infarction Model. Inflammation 36, 738–749 (2013). https://doi.org/10.1007/s10753-013-9600-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-013-9600-8

KEY WORDS

Navigation