Skip to main content
Log in

The Nitrone Spin Trap 5,5-Dimethyl-1-pyrroline N-oxide Affects Stress Response and Fate of Lipopolysaccharide-Primed RAW 264.7 Macrophage Cells

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The nitrone spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) is commonly used to study free radicals. Due to its free radical trapping properties, DMPO is thought to reduce free radial-mediated oxidative damage and other related cellular responses. The purpose of this study was to assess the effect of DMPO on lipopolysaccharide (LPS)-induced inflammation, endoplasmic reticulum (ER) stress, and apoptosis in RAW 264.7 cells. The results showed that DMPO at 50 mM inhibited inducible nitric oxide synthase expression when added shortly after LPS treatment (≤3 h). Interestingly, DMPO increased anti-inflammatory heme oxygenase-1 (HO-1) expression and reversed LPS-induced decrease in HO-1 expression. LPS could increase cellular ER stress as indicated by C/EBP homologous protein (CHOP) induction; DMPO reduced LPS effect on CHOP expression. Unexpectedly, DMPO had a synergistic effect with LPS on increased caspase-3 activity. Overall, DMPO harbors multiple modulating effects but may induce apoptosis in LPS-stressed cells when given at 50 mM, an effective dose for its anti-inflammatory activity in vitro. Our data provide clues for further understanding of the nitrone spin trap with therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Winterbourn, C.C. 2008. Reconciling the chemistry and biology of reactive oxygen species. Nature Chemical Biology 4: 278–286.

    Article  PubMed  CAS  Google Scholar 

  2. Janzen, E.G. 1984. Spin trapping. Methods in Enzymology 105: 188–198.

    Article  PubMed  CAS  Google Scholar 

  3. Janzen, E.G., and J.I. Liu. 1973. Radical addition reactions of 5,5-dimethyl-l-pyrroline-l-oxide. ESR spin trapping with a cyclic nitrone. Journal of Magnetic Resonance 9: 510–513.

    CAS  Google Scholar 

  4. Janzen, E.G., J.L. Poyer, C.F. Schaefer, P.E. Downs, and C.M. DuBose. 1995. Biological spin trapping. II. Toxicity of nitrone spin traps: Dose-ranging in the rat. Journal of Biochemical and Biophysical Methods 30: 239–247.

    Article  PubMed  CAS  Google Scholar 

  5. Ranguelova, K., and R.P. Mason. 2011. The fidelity of spin trapping with DMPO in biological systems. Magnetic Resonance in Chemistry 49: 152–158.

    Article  PubMed  CAS  Google Scholar 

  6. Gomez-Mejiba, S.E., Z. Zhai, H. Akram, L.J. Deterding, K. Hensley, N. Smith, et al. 2009. Immuno-spin trapping of protein and DNA radicals: “Tagging” free radicals to locate and understand the redox process. Free Radical Biology & Medicine 46: 853–865.

    Article  CAS  Google Scholar 

  7. Mason, R.P. 2004. Using anti-5,5-dimethyl-1-pyrroline N-oxide (anti-DMPO) to detect protein radicals in time and space with immuno-spin trapping. Free Radical Biology & Medicine 36: 1214–1223.

    Article  CAS  Google Scholar 

  8. Ramirez, D.C., S.E. Mejiba, and R.P. Mason. 2006. Immuno-spin trapping of DNA radicals. Nature Methods 3: 123–127.

    Article  PubMed  CAS  Google Scholar 

  9. Gomez-Mejiba, S.E., Z. Zhai, M.S. Gimenez, M.T. Ashby, J. Chilakapati, K. Kitchin, et al. 2010. Myeloperoxidase-induced genomic DNA-centered radicals. Journal of Biological Chemistry 285: 20062–20071.

    Article  PubMed  CAS  Google Scholar 

  10. Zhang, K. 2010. Integration of ER stress, oxidative stress and the inflammatory response in health and disease. International Journal of Clinical and Experimental Medicine 3: 33–40.

    Article  PubMed  CAS  Google Scholar 

  11. Ramirez, D.C., S.E. Mejiba, and R.P. Mason. 2005. Copper-catalyzed protein oxidation and its modulation by carbon dioxide: Enhancement of protein radicals in cells. Journal of Biological Chemistry 280: 27402–27411.

    Article  PubMed  CAS  Google Scholar 

  12. Floyd, R.A., R.D. Kopke, C.H. Choi, S.B. Foster, S. Doblas, and R.A. Towner. 2008. Nitrones as therapeutics. Free Radical Biology & Medicine 45: 1361–1374.

    Article  CAS  Google Scholar 

  13. Kotake, Y. 1999. Pharmacologic properties of phenyl N-tert-butylnitrone. Antioxidants & Redox Signaling 1: 481–499.

    Article  CAS  Google Scholar 

  14. Floyd, R.A., K. Hensley, M.J. Forster, J.A. Kelleher-Anderson, and P.L. Wood. 2002. Nitrones as neuroprotectants and antiaging drugs. Annals of the New York Academy of Sciences 959: 321–329.

    Article  PubMed  CAS  Google Scholar 

  15. Hamburger, S.A., and P.B. McCay. 1989. Endotoxin-induced mortality in rats is reduced by nitrones. Circulatory Shock 29: 329–334.

    PubMed  CAS  Google Scholar 

  16. Tosaki, A., R.F. Haseloff, A. Hellegouarch, K. Schoenheit, V.V. Martin, D.K. Das, et al. 1992. Does the antiarrhythmic effect of DMPO originate from its oxygen radical trapping property or the structure of the molecule itself? Basic Research in Cardiology 87: 536–547.

    Article  PubMed  CAS  Google Scholar 

  17. Zuo, L., Y.R. Chen, L.A. Reyes, H.L. Lee, C.L. Chen, F.A. Villamena, et al. 2009. The radical trap 5,5-dimethyl-1-pyrroline N-oxide exerts dose-dependent protection against myocardial ischemia–reperfusion injury through preservation of mitochondrial electron transport. Journal of Pharmacology and Experimental Therapeutics 329: 515–523.

    Article  PubMed  CAS  Google Scholar 

  18. Zhai, Z., S.E. Gomez-Mejiba, H. Zhu, F. Lupu, and D.C. Ramirez. 2012. The spin trap 5,5-dimethyl-1-pyrroline N-oxide inhibits lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Life Sciences 90: 432–439.

    Article  PubMed  CAS  Google Scholar 

  19. Zhai, Z., S.E. Gomez-Mejiba, M.S. Gimenez, L.J. Deterding, K.B. Tomer, R.P. Mason, et al. 2012. Free radical-operated proteotoxic stress in macrophages primed with lipopolysaccharide. Free Radical Biology & Medicine 53: 172–181.

    Article  CAS  Google Scholar 

  20. Nathan, C.F. 1987. Secretory products of macrophages. The Journal of Clinical Investigation 79: 319–326.

    Article  PubMed  CAS  Google Scholar 

  21. Muller, J.M., H.W. Ziegler-Heitbrock, and P.A. Baeuerle. 1993. Nuclear factor kappa B, a mediator of lipopolysaccharide effects. Immunobiology 187: 233–256.

    Article  PubMed  CAS  Google Scholar 

  22. Stuehr, D.J., and M.A. Marletta. 1987. Synthesis of nitrite and nitrate in murine macrophage cell lines. Cancer Research 47: 5590–5594.

    PubMed  CAS  Google Scholar 

  23. Lahti, A., U. Jalonen, H. Kankaanranta, and E. Moilanen. 2003. c-Jun NH2-terminal kinase inhibitor anthra(1,9-cd)pyrazol-6(2H)-one reduces inducible nitric-oxide synthase expression by destabilizing mRNA in activated macrophages. Molecular Pharmacology 64: 308–315.

    Article  PubMed  CAS  Google Scholar 

  24. Ashino, T., R. Yamanaka, M. Yamamoto, H. Shimokawa, K. Sekikawa, Y. Iwakura, et al. 2008. Negative feedback regulation of lipopolysaccharide-induced inducible nitric oxide synthase gene expression by heme oxygenase-1 induction in macrophages. Molecular Immunology 45: 2106–2115.

    Article  PubMed  CAS  Google Scholar 

  25. Srisook, K., and Y.N. Cha. 2004. Biphasic induction of heme oxygenase-1 expression in macrophages stimulated with lipopolysaccharide. Biochemical Pharmacology 68: 1709–1720.

    Article  PubMed  CAS  Google Scholar 

  26. Endo, M., M. Mori, S. Akira, and T. Gotoh. 2006. C/EBP homologous protein (CHOP) is crucial for the induction of caspase-11 and the pathogenesis of lipopolysaccharide-induced inflammation. Journal of Immunology 176: 6245–6253.

    CAS  Google Scholar 

  27. Yadav, U.C., N.M. Kalariya, S.K. Srivastava, and K.V. Ramana. 2010. Protective role of benfotiamine, a fat-soluble vitamin B1 analogue, in lipopolysaccharide-induced cytotoxic signals in murine macrophages. Free Radical Biology & Medicine 48: 1423–1434.

    Article  CAS  Google Scholar 

  28. Tan, A.C., I. Konczak, D.M. Sze, and I. Ramzan. 2011. Molecular pathways for cancer chemoprevention by dietary phytochemicals. Nutrition and Cancer 63: 495–505.

    Article  PubMed  CAS  Google Scholar 

  29. Clark, R.A., and A.J. Valente. 2004. Nuclear factor kappa B activation by NADPH oxidases. Mechanisms of Ageing and Development 125: 799–810.

    Article  PubMed  CAS  Google Scholar 

  30. Hualin, C., X. Wenli, L. Dapeng, L. Xijing, P. Xiuhua, and P. Qingfeng. 2012. The anti-inflammatory mechanism of heme oxygenase-1 induced by hemin in primary rat alveolar macrophages. Inflammation 35: 1087–1093.

    Google Scholar 

  31. Chung, H.T., B.M. Choi, Y.G. Kwon, and Y.M. Kim. 2008. Interactive relations between nitric oxide (NO) and carbon monoxide (CO): Heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods in Enzymology 441: 329–338.

    Article  PubMed  CAS  Google Scholar 

  32. Lin, H.Y., S.H. Juan, S.C. Shen, F.L. Hsu, and Y.C. Chen. 2003. Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochemical Pharmacology 66: 1821–1832.

    Article  PubMed  CAS  Google Scholar 

  33. Hou, C.C., C.C. Huang, and L.F. Shyur. 2011. Echinacea alkamides prevent lipopolysaccharide/d-galactosamine-induced acute hepatic injury through JNK pathway-mediated HO-1 expression. Journal of Agricultural and Food Chemistry 59: 11966–11974.

    Article  PubMed  CAS  Google Scholar 

  34. Applegate, L.A., P. Luscher, and R.M. Tyrrell. 1991. Induction of heme oxygenase: A general response to oxidant stress in cultured mammalian cells. Cancer Research 51: 974–978.

    PubMed  CAS  Google Scholar 

  35. Nakayama, Y., M. Endo, H. Tsukano, M. Mori, Y. Oike, and T. Gotoh. 2010. Molecular mechanisms of the LPS-induced non-apoptotic ER stress-CHOP pathway. Journal of Biochemistry 147: 471–483.

    Article  PubMed  CAS  Google Scholar 

  36. Jian, B., C.H. Hsieh, J. Chen, M. Choudhry, K. Bland, I. Chaudry, et al. 2008. Activation of endoplasmic reticulum stress response following trauma-hemorrhage. Biochimica et Biophysica Acta 1782: 621–626.

    Article  PubMed  CAS  Google Scholar 

  37. Seminara, A.R., P.P. Ruvolo, and F. Murad. 2007. LPS/IFNgamma-induced RAW 264.7 apoptosis is regulated by both nitric oxide-dependent and -independent pathways involving JNK and the Bcl-2 family. Cell Cycle 6: 1772–1778.

    Article  PubMed  CAS  Google Scholar 

  38. McCullough, K.D., J.L. Martindale, L.O. Klotz, T.Y. Aw, and N.J. Holbrook. 2001. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Molecular and Cellular Biology 21: 1249–1259.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by Award Number 5R00ES015415-04 to DCR from the National Institute of Environmental Health Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health. DCR is an Affiliated Researcher of the Laboratory of Pharmacology and Toxicology at the NIEHS, USNIH, and DHHS.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zili Zhai or Dario C. Ramirez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Z., Gomez-Mejiba, S.E. & Ramirez, D.C. The Nitrone Spin Trap 5,5-Dimethyl-1-pyrroline N-oxide Affects Stress Response and Fate of Lipopolysaccharide-Primed RAW 264.7 Macrophage Cells. Inflammation 36, 346–354 (2013). https://doi.org/10.1007/s10753-012-9552-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-012-9552-4

KEY WORDS

Navigation