Hyperfine Interactions

, Volume 172, Issue 1, pp 41–43

Towards a new measurement of the neutron electric dipole moment

Authors

    • Laboratoire de Physique Corpusculaire de Caen
  • K. Bodek
    • Jagellonian University
  • M. Daum
    • Paul Scherrer Institute
  • R. Henneck
    • Paul Scherrer Institute
  • S. Heule
    • Paul Scherrer Institute
  • M. Kasprzak
    • Paul Scherrer Institute
  • N. Khomytov
    • Joint Institute for Nuclear Research
  • K. Kirch
    • Paul Scherrer Institute
  • A. Knecht
    • Paul Scherrer Institute
  • S. Kistryn
    • Jagellonian University
  • P. Knowles
    • University of Fribourg
  • M. Kuzniak
    • Jagellonian University
    • Paul Scherrer Institute
  • T. Lefort
    • Laboratoire de Physique Corpusculaire de Caen
  • O. Naviliat-Cuncic
    • Laboratoire de Physique Corpusculaire de Caen
  • A. Pichlmaier
    • Paul Scherrer Institute
  • C. Plonka
    • Institute Laue-Langevin
  • G. Quémener
    • Laboratoire de Physique Subatomique et de Cosmologie
  • M. Rebetez
    • University of Fribourg
  • D. Rebreyend
    • Laboratoire de Physique Subatomique et de Cosmologie
  • G. Rogel
    • Laboratoire de Physique Corpusculaire de Caen
    • Institute Laue-Langevin
  • B. M. Sabirov
    • Joint Institute for Nuclear Research
  • M. Tur
    • Laboratoire de Physique Subatomique et de Cosmologie
  • A. Weis
    • University of Fribourg
  • J. Zejma
    • Jagellonian University
Article

DOI: 10.1007/s10751-007-9522-7

Cite this article as:
Ban, G., Bodek, K., Daum, M. et al. Hyperfine Interact (2006) 172: 41. doi:10.1007/s10751-007-9522-7

Abstract

Precision measurements of particle electric dipole moments (EDMs) provide extremely sensitive means to search for non-standard mechanisms of T (or CP) violation. For the neutron EDM, the upper limit has been reduced by eight orders of magnitude in 50 years thereby excluding several CP violation scenarios. We report here on a new effort aiming at improving the neutron EDM limit by two orders of magnitude, down to a level of 3 × 10−28 e·cm. The two central elements of the approach are the use of the higher densities which will be available at the new dedicated spallation UCN source at the Paul Scherrer Institute, and the optimization of the in-vacuum Ramsey resonance technique, with storage chambers at room temperature, to reach new limits of sensitivity.

Keywords

CP-violation Electric dipole moment Tests of the standard model

Copyright information

© Springer Science+Business Media B.V. 2007