Skip to main content
Log in

Diatom-based models for inferring water chemistry and hydrology in temporary depressional wetlands

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Information on the response of temporary depressional wetland diatoms to human-induced disturbances is a limited and important component for the development of temporary wetland biological assessments in human-modified landscapes. Establishing a reference condition of variation due to natural disturbances in depressional wetlands using diatoms is necessary for further investigations of anthropogenic impacts. We examined the temporal and spatial responses of epiphytic diatom communities to natural environmental disturbances within three least disturbed wetlands in the Mpumalanga Province, South Africa. Alkalinity, Na+ and Cl, water depth and total relative evapotranspiration (ETo) accounted for the highest proportion of temporal variation in composition of epiphytic diatoms, as revealed by canonical correspondence analysis (CCA). Alkalinity, Na+, and Cl explained a much higher proportion of species variation, using partial CCA. A simple WA with inverse deshrinking produced reasonably robust models for Na+ (r 2boot  = 0.71), depth (r 2boot  = 0.64) and alkalinity (r 2boot  = 0.46), not for Cl and ETo. We determined species optima and tolerances for Na+, depth and alkalinity which can facilitate identification of anthropogenic impacts based on changes of indicator taxa assemblages. Our study provides a basis for newly developed quantitative tools to be used in biomonitoring studies and evaluations of reference conditions for temporary wetland management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association (APHA), 1998. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Battarbee, R. W., 1986. Diatom analysis. In Berglund, B. E. (ed.), Handbook of Holocene Paleoecology and Paleohydrology. Wiley, Chichester, Great Britain: 527–570.

    Google Scholar 

  • Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2001. Diatoms tracing environmental change using lake sediments. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Terrestrial, Algal, and Siliceous Indicators, Vol. 3. Kluwer, Dordrecht: 155–202.

    Google Scholar 

  • Bennion, H., C. D. Sayer, J. Tibby & H. J. Carrick, 2010. Diatoms as indicators of environmental change in shallow lakes. In The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 152–173.

  • Bhattacharyya, P. & B. E. Volcani, 1980. Sodium-dependent silicate transport in the apochlorotic marine diatom Nitzschia alba. Proceedings of the National academy of Sciences of the United States of America 77: 6386–6390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, M. S. & J. A. Day, 2010. Aquatic invertebrates as indicators of human impacts in South African wetlands. Wetland Health and Importance Research Programme. Water Research Commission (WRC), Pretoria, South Africa.

    Google Scholar 

  • Bird, M. S., M. C. Mlambo & J. A. Day, 2013. Macroinvertebrates as unreliable indicators of human disturbance in temporary depression wetlands of the south-western Cape, South Africa. Hydrobiologia 720: 19–37.

    Article  Google Scholar 

  • Birks, H. J. B., J. M. Line, S. Juggins, A. C. Stevenson & C. J. F. T. Braak, 1990. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society B: Biological Sciences 327: 263–278.

    Article  Google Scholar 

  • Blinn, D. W., 1993. Diatom community structure along physicochemical gradients in saline lakes. Ecology 74: 1246.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Caramujo, M.-J. & M.-J. Boavida, 2010. Biological diversity of copepods and cladocerans in Mediterranean temporary ponds under periods of contrasting rainfall. Journal of Limnology 69: 64–75.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Primer-E, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. N. Gorley, 2006. Primer v6: User Manual/Tutorial. Primer-E, Plymouth.

    Google Scholar 

  • Cohn, S. A. & N. C. Disparti, 1994. Environmental factors influencing diatom cell motility. Journal of Phycology 30: 818–828.

    Article  Google Scholar 

  • CSIR, 2010. A CSIR Perspective on Water in South Africa. CSIR, Pretoria, South Africa.

    Google Scholar 

  • Cumming, B., S. Wilson, R. Hall & J. P. Smol, 1995. Diatoms from British Columbia (Canada) Lakes and their relationship to salinity, nutrients and other limnological variables. Limnology and Oceanography 54(6, part 2): 2273–2564.

    Google Scholar 

  • Day, E., & H. Malan, 2010. Tools and Metrics for Assessment of Wetland Environmental Condition and Socio-Economic Importance Handbook to the WHI Research Programme. Water Research Commission (WRC), Pretoria, South Africa.

  • Della Bella, V. & L. Mancini, 2009. Freshwater diatom and macroinvertebrate diversity of coastal permanent ponds along a gradient of human impact in a Mediterranean eco-region. In Oertli, B., R. Céréghino, J. Biggs, S. Declerck, A. Hull & M. R. Miracle (eds), Pond Conservation in Europe. Springer Netherlands, Dordrecht: 181–197.

    Chapter  Google Scholar 

  • Della Bella, V., C. Puccinelli, S. Marcheggiani & L. Mancini, 2007. Benthic diatom communities and their relationship to water chemistry in wetlands of central Italy. Annales de Limnologie – International Journal of Limnology 43: 89–99.

    Article  Google Scholar 

  • Dickens, C. W. & P. M. Graham, 2002. The South African Scoring System (SASS), Version 5 Rapid Bioassessment Method for Rivers. African Journal of Aquatic Science 27: 1–10.

    Article  Google Scholar 

  • Dimitriou, E., E. Moussoulis, F. Stamati & N. Nikolaidis, 2009. Modelling hydrological characteristics of Mediterranean Temporary Ponds and potential impacts from climate change. Hydrobiologia 634: 195–208.

    Article  Google Scholar 

  • Dyson, L. L., 2009. Heavy daily-rainfall characteristics over the Gauteng Province. Water SA 35: 627–638.

    Article  Google Scholar 

  • Ferreira, M., 2012. The development of methods to assess the ecological integrity of perennial pans. Ph.D. Thesis.

  • Ferreira, M., V. Wepener & J. H. J. van Vuren, 2012. Aquatic invertebrate communities of perennial pans in Mpumalanga, South Africa: a diversity and functional approach. African Invertebrates 53: 751–768.

    Article  Google Scholar 

  • Fritz, S., S. Juggins & R. Battarbee, 1993. Diatom assemblages and ionic characterization of lakes of the northern Great Plains, North America: a tool for reconstructing past salinity and climate fluctuations. Canadian Journal of Fisheries and Aquatic Sciences 50: 1844–1856.

    Article  CAS  Google Scholar 

  • Fritz, S., B. Cumming, F. Gasse, K. Laird, J. Smol, & E. Stoermer, 2010. Diatoms as indicators of hydrologic and climatic change in saline lakes. In The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 186–208.

  • Gaiser, E. E. & J. Johansen, 2000. Freshwater diatoms from Carolina bays and other isolated wetlands on the Atlantic Coastal Plain of South Carolina, U.S.A., with descriptions of seven taxa new to science. Diatom Research 15: 75–130.

    Article  Google Scholar 

  • Gaiser, E. & K. Rühland, 2010. Diatoms as indicators of environmental change in wetlands and peatlands. In The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge: 473–496.

  • Gaiser, E. E., T. E. Philippi & B. E. Taylor, 1998. Distribution of diatoms among intermittent ponds on the Atlantic Coastal Plain: development of a model to predict drought periodicity from surface-sediment assemblages. Journal of Paleolimnology 20: 71–90.

    Article  Google Scholar 

  • Gaiser, E. E., B. E. Taylor & M. J. Brooks, 2001. Establishment of wetlands on the southeastern Atlantic Coastal Plain: paleolimnological evidence of a mid-Holocene hydrologic threshold from a South Carolina pond. Journal of Paleolimnology 26: 373–391.

    Article  Google Scholar 

  • Gaiser, E. E., M. J. Brooks, W. F. Kenney, C. L. Schelske & B. E. Taylor, 2004. Interpreting the hydrological history of a temporary pond from chemical and microscopic characterization of siliceous microfossils. Journal of Paleolimnology 31: 63–76.

    Article  Google Scholar 

  • Gasse, F., J. F. Talling & P. Kilham, 1983. Diatom assemblages in East Africa: classification, distribution and ecology. Revue d’hydrobiologie tropicale 16: 3–34.

    Google Scholar 

  • Gasse, F., S. Juggins & L. B. Khelifa, 1995. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 117: 31–54.

    Article  Google Scholar 

  • Gell, P. A., I. R. Sluiter & J. Fluin, 2002. Seasonal and interannual variations in diatom assemblages in Murray River connected wetlands in north-west Victoria, Australia. Marine and Freshwater Research 53: 981.

    Article  CAS  Google Scholar 

  • Gillett, N. D., Y. Pan, K. M. Manoylov, R. Stancheva & C. L. Weilhoefer, 2011. The potential indicator value of rare taxa richness in diatom-based stream bioassessment. Journal of Phycology 47: 471–482.

    Article  PubMed  Google Scholar 

  • Gregory-Eaves, I., J. P. Smol, B. P. Finney & M. E. Edwards, 1999. Diatom-based transfer functions for inferring past climatic and environmental changes in Alaska, USA. Arctic, Antarctic, and Alpine Research 31(4): 353–365.

    Article  Google Scholar 

  • Hagerthey, S. E., B. J. Bellinger, K. Wheeler, M. Gantar & E. Gaiser, 2011. Everglades periphyton: a biogeochemical perspective. Critical Reviews in Environmental Science and Technology 41: 309–343.

    Article  Google Scholar 

  • Henry, D. A. W., J. M. Ament & G. S. Cumming, 2016. Exploring the environmental drivers of waterfowl movement in arid landscapes using first-passage time analysis. Movement Ecology 4: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, M. O., 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

    Article  Google Scholar 

  • Hofmann, G., H. Lange-Bertalot, M. Werum & H. Lange-Bertalot, 2013. Diatomeen im Süßwasser – Benthos von Mitteleuropa: Bestimmungsflora Kieselalgen für die ökologische Praxis; über 700 der häufigsten Arten und ihre Ökologie. Koeltz, Königstein.

  • Juggins, S., 2003. C2 Data Analysis. University of Newcastle, England.

    Google Scholar 

  • Jüttner, I., L. Ector, E. Reichardt, B. Van de Vijver, A. Jarlman, J. Krokowski & E. J. Cox, 2013. Gomphonema varioreduncum sp. nov., a new species from northern and western Europe and a reexamination of Gomphonema exilissimum. Diatom Research 28: 303–316.

    Article  Google Scholar 

  • Karthick, B., J. P. Kociolek, M. K. Mahesh & T. V. Ramachandra, 2011. The diatom genus Gomphonema Ehrenberg in India: checklist and description of three new species. Nova Hedwigia 93: 211–236.

    Article  Google Scholar 

  • King, L., G. Clarke, H. Bennion, M. Kelly & M. Yallop, 2006. Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology 18: 15–25.

    Article  Google Scholar 

  • Köster, D., J. M. J. Racca & R. Pienitz, 2004. Diatom-based inference models and reconstructions revisited: methods and transformations. Journal of Paleolimnology 32: 233–246.

    Article  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986–1991. Bacillariaceae. In Ettl, H., J. Gerloff, H. Heynig & D. Mollenhauer (eds), Susswasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg: 1–2458.

  • Krammer, K., H. Lange-Bertalot, A. Pascher, H. Ettl, B. Büdel & K. Krammer, 1988. Bacillariaceae, Epithemiaceae, Surirellaceae. G. Fischer, Jena.

    Google Scholar 

  • Lane, C. R., 2007. Assessment of isolated wetland condition in florida using epiphytic diatoms at genus, species, and subspecies taxonomic resolution. EcoHealth 4: 219–230.

    Article  Google Scholar 

  • Lane, C. R. & M. T. Brown, 2007. Diatoms as indicators of isolated herbaceous wetland condition in Florida, USA. Ecological Indicators 7: 521–540.

    Article  Google Scholar 

  • Lane, C. R., K. C. Reiss, S. DeCelles & M. T. Brown, 2009. Benthic diatom composition in isolated forested wetlands subject to drying: implications for monitoring and assessment. Ecological Indicators 9: 1121–1128.

    Article  CAS  Google Scholar 

  • Lange-Bertalot, H. (ed.), 2000–2002. Diatoms of Europe. In Diatoms of the European Inland Waters and Comparable Habitats, Vols. I–IV. A. R. G. Gantner Verlag K. G., Ruggell.

  • Lange-Bertalot, H., A. Podzorski & H. Lange-Bertalot, 2001. Navicula Sensu Stricto, 10 Genera Separated from Navicula Sensu Lato, Frustulia. Gantner, Ruggell/Liechtenstein.

    Google Scholar 

  • Leibowitz, S. G., 2003. Isolated wetlands and their functions: an ecological perspective. Wetlands 23: 517–531.

    Article  Google Scholar 

  • Leibowitz, S. G., D. M. Mushet & W. E. Newton, 2016. Intermittent surface water connectivity: fill and spill vs. fill and merge dynamics. Wetlands 36: 323–342.

    Article  Google Scholar 

  • Leira, M., M. L. Filippi & M. Cantonati, 2015. Diatom community response to extreme water-level fluctuations in two Alpine lakes: a core case study. Journal of Paleolimnology 53: 289–307.

    Article  Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.

    Article  Google Scholar 

  • McCune, B. & M. J. Mefford, 2006. PC-ORD. Multivariate analysis of ecological data, Version 5.10. MjM Software Design, Gleneden Beach, OR.

  • National Environmental Management: Biodiversity Act, 2004. Act No. 10. Government Gazette No. 26436, South Africa: 43 pp.

  • National Water Act, 1998. Act No. 36. Government Gazette No. 19182, South Africa: 201 pp.

  • Niemistö, J., H. Holmroos, Z. Pekcan-Hekim & J. Horppila, 2008. Interactions between sediment resuspension and sediment quality decrease the TN:TP ratio in a shallow lake. Limnology and Oceanography 53: 2407–2415.

    Article  Google Scholar 

  • Ochieng, G. M., E. S. Seanego & O. I. Nkwonta, 2010. Impacts of mining on water resources in South Africa: a review. Scientific Research and Essays 5: 3351–3357.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966. The Diatoms of the United States, Exclusive of Alaska and Hawaii. Academy of Natural Sciences of Philadelphia, Philadelphia.

    Google Scholar 

  • Potapova, M., 2011. Patterns of diatom distribution in relation to salinity. In Seckbach, J. & P. Kociolek (eds), The Diatom World. Springer, Berlin: 313–332.

    Chapter  Google Scholar 

  • Potapova, M. G. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.

    Article  Google Scholar 

  • Potapova, M. & D. F. Charles, 2003. Distribution of benthic diatoms in US rivers in relation to conductivity and ionic composition. Freshwater Biology 48: 1311–1328.

    Article  CAS  Google Scholar 

  • Potapova, M. & D. F. Charles, 2004. Potential use of rare diatoms as environmental indicators in USA rivers. In Poulin, M. (ed.), Proceedings of the 17th International Diatom Symposium. Biopress Ltd., Bristol: 281–295.

    Google Scholar 

  • Reavie, E. & J. Smol, 2001. Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. Journal of Paleolimnology 25: 25–42.

    Article  Google Scholar 

  • Reichardt, E., 2015. Gomphonema gracile Ehrenberg sensu stricto et sensu auct. (Bacillariophyceae): a taxonomic revision. Nova Hedwigia 101: 367–393.

    Article  Google Scholar 

  • Reichardt, E. & H. Lange-Bertalot (eds), 1999. Zur Revision der Gattung Gomphonema: die Arten um G. affine/insigne, G. angustatum/micropus, G. acuminatum sowie gomphonemoide Diatomeen aus dem Oberoligozän in Böhmen. Koeltz Scientific Books, Königstein.

  • Reiss, K. C., M. T. Brown & C. R. Lane, 2010. Characteristic community structure of Florida’s subtropical wetlands: the Florida wetland condition index for depressional marshes, depressional forested, and flowing water forested wetlands. Wetlands Ecology and Management 18: 543–556.

    Article  Google Scholar 

  • Riato, L., C. Van Ginkel & J. C. Taylor, 2014. Zooplankton and diatoms of temporary and permanent freshwater pans in the Mpumalanga Highveld region, South Africa. African Zoology 49: 113–127.

    Article  Google Scholar 

  • Rose, D. & E. J. Cox, 2014. What constitutes Gomphonema parvulum? Long-term culture studies show that some varieties of G. parvulum belong with other Gomphonema species. Plant Ecology and Evolution 147: 366–373.

    Article  Google Scholar 

  • Rountree, M. W., H. Malan & B. Weston, 2013. Manual for the Rapid Ecological Reserve Determination of Inland Wetlands, Version 2.0. WRC Project No. K5/1788. Department of Water Affairs and Water Research Commission, Pretoria, South Africa.

  • Roux, M., S. Servant-Vildary & M. Servant, 1991. Inferred ionic composition and salinity of a Bolivian Quaternary lake, as estimated from fossil diatoms in the sediments. Hydrobiologia 210: 3–18.

    Article  CAS  Google Scholar 

  • Saros, J. E. & S. C. Fritz, 2000. Nutrients as a link between ionic concentration/composition and diatom distributions in saline lakes. Journal of Paleolimnology 23: 449–453.

    Article  Google Scholar 

  • Schoeman, F. R., 1973. A systematical and ecological study of the diatom flora of Lesotho with special reference to water quality. V & R Printers, Pretoria, South Africa.

    Google Scholar 

  • Schoeman, F. R. & R. E. M. Archibald, 1976–1980. The Diatom Flora of Southern Africa. National Institute for Water Research, CSIR Special Report WAT 50, Pretoria, South Africa.

  • Schulze, R. E., 1997. South African Atlas of Agrohydrology and Climatology. Water Research Commission, Pretoria, South Africa.

    Google Scholar 

  • Sheoran, A. S. & V. Sheoran, 2006. Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering 19: 105–116.

    Article  CAS  Google Scholar 

  • Stenger-Kovács, C., K. Buczkó, É. Hajnal & J. Padisák, 2007. Epiphytic, littoral diatoms as bioindicators of shallow lake trophic status: Trophic Diatom Index for Lakes (TDIL) developed in Hungary. Hydrobiologia 589: 141–154.

    Article  Google Scholar 

  • Stenger-Kovács, C., E. Lengyel, L. O. Crossetti, V. Üveges & J. Padisák, 2013. Diatom ecological guilds as indicators of temporally changing stressors and disturbances in the small Torna-stream, Hungary. Ecological Indicators 24: 138–147.

    Article  Google Scholar 

  • Stevenson, R. J., S. Juggins, H. J. B. Birks, D. S. Anderson, N. J. Anderson, R. W. Battarbee, F. Berge, R. B. Davis, R. J. Flower, Y. Haworth, V. J. Jones, J. C. Kingston, A. M. Kreiser, J. M. Line, M. A. R. Munro & I. Renberg, 1991. The Surface Waters Acidification Project Palaeolimnology Programme: Modern Diatom/Lakewater Chemistry Dataset. NSIS Publishing, London.

    Google Scholar 

  • Taylor, J. C., P. A. de la Rey & L. van Rensburg, 2005. Recommendations for the collection, preparation and enumeration of diatoms from riverine habitats for water quality monitoring in South Africa. African Journal of Aquatic Science 30: 65–75.

    Article  Google Scholar 

  • ter Braak, C. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination, Version 4.5. Microcomputer Power, Ithaca.

  • Tibby, J., P. A. Gell, J. Fluin & I. R. K. Sluiter, 2007. Diatom–salinity relationships in wetlands: assessing the influence of salinity variability on the development of inference models. Hydrobiologia 591: 207–218.

    Article  CAS  Google Scholar 

  • Tiner, R. W., 2003. Geographically isolated wetlands of the United States. Wetlands 23: 494–516.

    Article  Google Scholar 

  • Tooth, S. & T. S. McCarthy, 2007. Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Progress in Physical Geography 31: 3–41.

    Article  Google Scholar 

  • Triest, L., H. Lung’ayia, G. Ndiritu & A. Beyene, 2012. Epilithic diatoms as indicators in tropical African rivers (Lake Victoria catchment). Hydrobiologia 695: 343–360.

    Article  CAS  Google Scholar 

  • Tuchman, M. L., E. Theriot & E. F. Stoermer, 1984. Effects of low level salinity concentrations on the growth of Cyclotella meneghiniana Kütz. (Bacillariophyta). Archiv für Protistenkunde 128: 319–326.

    Article  Google Scholar 

  • USEPA, 2016. National Wetland Condition Assessment 2011: A Collaborative Survey of the Nation’s Wetlands. Office of Wetlands (EPA-843-R-15-005). US Environmental Protection Agency, Washington, DC: 119 pp.

  • Vymazal, J., 1995. Algae and Element Cycling in Wetlands. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Wilson, S. E., B. F. Cumming & J. P. Smol, 1996. Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America. Canadian Journal of Fisheries and Aquatic Sciences 53: 1580–1594.

    Google Scholar 

  • Yang, J.-R. & H. C. Duthie, 1995. Regression and weighted averaging models relating surficial sedimentary diatom assemblages to water depth in lake Ontario. Journal of Great Lakes Research 21: 84–94.

    Article  Google Scholar 

  • Zimba, P. V. & M. S. Hopson, 1997. Quantification of epiphyte removal efficiency from submersed aquatic plants. Aquatic Botany 58: 173–179.

    Article  Google Scholar 

  • Zotarelli, L., M. D. Dukes, C. C. Romero, K. W. Migliaccio & K. T. Morgan, 2010. Step by Step Calculation of the Penman–Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences, University of Florida, Gainesville.

    Google Scholar 

Download references

Acknowledgements

Luisa Riato was supported by a Coaltech Research Association Research Fellowship. We thank Waterlab (Pty) Ltd. and J. Taylor at North West University for assistance with research expenses, S. Driskill with cartographic design, B. Reynolds and Wetland Consulting Services (Pty) Ltd. for field assistance, S.Blanco for taxonomic advice, P. Wade and two anonymous reviewers for their insightful comments and suggestions on the earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Riato.

Additional information

Handling editor: Jasmine Saros

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 51 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riato, L., Leira, M., Bella, V.D. et al. Diatom-based models for inferring water chemistry and hydrology in temporary depressional wetlands. Hydrobiologia 797, 127–143 (2017). https://doi.org/10.1007/s10750-017-3165-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3165-8

Keywords

Navigation