Skip to main content

Advertisement

Log in

Antipredator behavior of the Barton Springs salamander (Eurycea sosorum) in response to aquatic invertebrates: potential consequences of habitat restoration

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Barton Springs Salamander, Eurycea sosorum, is a fully aquatic salamander found in Barton Springs in Texas, USA, and has benefited from habitat restoration efforts. While important to improve overall habitat quality for this imperiled species, current management and restoration practices may also inadvertently increase the abundance of non-target organisms such as predatory invertebrates. Fish represent major predators of this species, but little is known about the role of invertebrates as potential predators. It is important to understand the role of these aquatic invertebrates as predators of E. sosorum, especially if habitat restoration also increases predator abundance. Using adult, predator-naïve salamanders, we examined the antipredator response of E. sosorum to chemical cues from the following treatments: crayfish, dragonfly larvae, snails, and water. Salamanders decreased activity (antipredator behavior) only in response to the crayfish treatment. The responses to dragonfly larvae, snails, and water did not differ, suggesting that dragonfly larvae are not perceived as predators by these salamanders. Our study provides preliminary evidence suggesting that habitat restoration has unexpectedly increased crayfish abundance, which in turn may negatively affect E. sosorum, and that future management strategies should consider crayfish removal if salamander abundances decline with increasing crayfish abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alford, R. A., 1999. Ecology: resource use, competition, and predation. In McDiarmid, R. W. & R. Altig (eds.), Tadpoles: the Biology of Anuran Larvae. University of Chicago Press, Chicago: 240–278.

    Google Scholar 

  • Azevedo-Ramos, C., M. van Sluys, J.-M. Hero & I. Magnusson, 1992. Influence of tadpole movement on predation by odonate naiads. Journal of Herpetology 26: 335–338.

    Article  Google Scholar 

  • Berger-Tal, O., T. Polak, A. Oron, Y. Lubin, B. P. Kotler & D. Saltz, 2011. Integrating animal behavior and conservation biology: a conceptual framework. Behavioral Ecology 22: 236–239.

    Article  Google Scholar 

  • Bowles, M. L. & C. J. Whelan, 1994. Restoration of Endangered Species: Conceptual Issues, Planning, and Implementation. Cambridge University Press, USA.

    Book  Google Scholar 

  • Brown, P. B., J. E. Wetzel II, A. Spacie & A. Konopka, 1992. Evaluation of naturally-occurring organisms as food for juvenile crayfish Procambarus clarkii. Journal of the World Aquaculture Society 23: 211–216.

    Article  Google Scholar 

  • Caldwell, J. P., 1982. Disruptive selection: a tail color polymorphism in Acris tadpoles in response to differential predation. Canadian Journal of Zoology 60: 2818–2827.

    Article  Google Scholar 

  • Caro, T., 1998. Behavioral Ecology and Conservation Biology. Oxford University Press, United Kingdom.

  • Casazza, M. L., C. T. Overton, T.-V. D. Bui, J. M. Hull, J. D. Albertson, V. K. Bloom, S. Bobzien, J. McBroom, M. Latta, P. Olofson, T. M. Rohmer, S. Schwarzbach, D. R. Strong, E. Grijalva, J. K. Wood, S. M. Skalos & J. Takekawa, 2016. Endangered species management and ecosystem restoration: finding the common ground. Ecology and Society 21: 19.

    Article  Google Scholar 

  • Chippindale, P. T., A. H. Price & D. M. Hillis, 1993. A new species of perennibranchiate salamander (Eurycea: Plethodontidae) from Austin, Texas. Herpetologica 49: 248–259.

    Google Scholar 

  • Chivers, D. P., R. S. Mirza, P. J. Bryer & J. M. Kiesecker, 2001. Threat-sensitive predator avoidance by slimy sculpins: understanding the role of visual versus chemical information. Canadian Journal of Zoology 79: 867–873.

    Article  Google Scholar 

  • Corbet, P. S., 1980. Biology of Odonata. Annual Review of Entomology 25: 189–217.

    Article  Google Scholar 

  • Crane, A. L. & A. Mathis, 2010. Predator-recognition training: a conservation strategy to increase postrelease survival of hellbenders in head-starting programs. Zoo Biology 29: 1–12.

    Google Scholar 

  • Crane, A., A. Mathis & C. McGrane, 2012. Socially facilitated antipredator behavior by ringed salamanders (Ambystoma annulatum). Behavioral Ecology and Sociobiology 66: 811–817.

    Article  Google Scholar 

  • Crawford, B. A., C. R. Hickman & T. M. Luhring, 2012. Testing the threat-sensitivity hypothesis with predator familiarity and dietary specificity. Ethology 118: 41–48.

    Article  Google Scholar 

  • Cruz, M. J. & R. Rebelo, 2005. Vulnerability of southwest Iberian amphibians to an introduced crayfish, Procambarus clarkii. Amphibia-Reptilia 26: 293–303.

    Article  Google Scholar 

  • Davis, D. R. & C. R. Gabor, 2015. Behavioral and physiological antipredator responses of the San Marcos salamander, Eurycea nana. Physiology & Behavior 139: 145–149.

    Article  CAS  Google Scholar 

  • Davis, D. R., K. J. Epp & C. R. Gabor, 2012. Predator generalization decreases the effect of introduced predators in the San Marcos salamander, Eurycea nana. Ethology 118: 1191–1197.

    Article  Google Scholar 

  • DeSantis, D. L., D. R. Davis & C. R. Gabor, 2013. Chemically mediated predator avoidance in the Barton Springs salamander (Eurycea sosorum). Herpetologica 69: 291–297.

    Article  Google Scholar 

  • Dobson, A. P., A. D. Bradshaw & A. J. M. Baker, 1997. Hopes for the future: restoration ecology and conservation biology. Science 277: 515–522.

    Article  CAS  Google Scholar 

  • Drake, D. L., T. L. Anderson, L. M. Smith, K. M. Lohraff & R. D. Semlitsch, 2014. Predation of eggs and recently hatched larvae of endemic ringed salamanders (Ambystoma annulatum) by native and introduced aquatic predators. Herpetologica 70: 378–387.

    Article  Google Scholar 

  • Epp, K. J. & C. R. Gabor, 2008. Innate and learned predator recognition mediated by chemical signals in Eurycea nana. Ethology 114: 607–615.

    Article  Google Scholar 

  • Ferrari, M. C. O., A. Sih & D. P. Chivers, 2009a. The paradox of risk allocation: a review and prospectus. Animal Behaviour 78: 579–585.

    Article  Google Scholar 

  • Ferrari, M. C. O., G. E. Brown, F. Messier & D. P. Chivers, 2009b. Threat-sensitive generalization of predator recognition by larval amphibians. Behavioral Ecology and Sociobiology 63: 1369–1375.

    Article  Google Scholar 

  • Ferrari, M. C. O., B. D. Wisenden & D. P. Chivers, 2010. Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology 88: 698–724.

    Article  Google Scholar 

  • Folsom, T. C. & N. C. Collins, 1984. The diet and foraging behavior of the larval dragonfly Anax junius (Aeshnidae), with an assessment of the role of refuges and prey activity. Oikos 42: 105–113.

    Article  Google Scholar 

  • Gamradt, S. C. & L. B. Kats, 1996. Effect of introduced crayfish and mosquitofish on California newts. Conservation Biology 10: 1155–1162.

    Article  Google Scholar 

  • Gamradt, S. C., L. B. Kats & C. B. Anzalone, 1997. Aggression by non-native crayfish deters breeding in California newts. Conservation Biology 11: 793–796.

    Article  Google Scholar 

  • Gherardi, F., 2002. Behaviour. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science, United Kingdom: 258–290.

    Google Scholar 

  • Gillespie, J. H. 2011. Ecology and Conservation of the Endangered Barton Springs Salamander (Eurycea sosorum). Ph.D. Dissertation, University of Texas at Austin.

  • Harding, E. K., D. F. Doak & J. D. Albertson, 2001. Evaluating the effectiveness of predator control: the non-native red fox as a case study. Conservation Biology 15: 1114–1122.

    Article  Google Scholar 

  • Hazlett, B. A., 2003. Predator recognition and learned irrelevance in the crayfish Orconectes virilis. Ethology 109: 765–780.

    Article  Google Scholar 

  • Helfman, G. S., 1989. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behavioral Ecology and Sociobiology 24: 47–58.

    Article  Google Scholar 

  • Huner, J. V. & S. Naqvi, 1984. Invertebrate fauna and crawfish food habits in Louisiana crawfish ponds. Proceedings of Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 38: 395–406.

    Google Scholar 

  • International Union for Conservation of Nature (IUCN). 2015. IUCN Red List of Threatened Species. Version 2015.4. Available at http://www.iucnredlist.org.

  • Kerfoot, W. C. & A. Sih, 1987. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, USA.

    Google Scholar 

  • Lardner, B., 2000. Morphological and life history responses to predators in larvae in seven anurans. Oikos 88: 169–180.

    Article  Google Scholar 

  • Lima, S. L. & P. A. Bednekoff, 1999. Temporal variation in danger derives antipredator behavior: the predation risk allocation hypothesis. The American Naturalist 153: 649–659.

    Article  Google Scholar 

  • Lima, S. L. & L. M. Dill, 1990. Behavioural decisions made under the risk of predation: a review and prospectus. Canadian Journal of Zoology 68: 619–640.

    Article  Google Scholar 

  • Linke, R., G. Roth & B. Rottluff, 1986. Comparative studies on the eye morphology of lungless salamanders, family Plethodontidae, and the effect of miniaturization. Journal of Morphology 189: 131–143.

    Article  Google Scholar 

  • Mathis, A. & F. Vincent, 2000. Differential use of visual and chemical cues in predator recognition and threat-sensitive predator-avoidance responses by larval newts (Notophthalmus viridiscens). Canadian Journal of Zoology 78: 1646–1652.

    Article  CAS  Google Scholar 

  • Mathis, A., L. Murray & C. Hickman, 2003. Do experience and body size play a role in responses of larval ringed salamanders, Ambystoma annulatum, to predator kairomones? Laboratory and field assays. Ethology 109: 159–170.

    Article  Google Scholar 

  • McCollum, S. A. & J. D. Leimberger, 1997. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color. Oecologia 109: 615–621.

    Article  CAS  PubMed  Google Scholar 

  • McIntyre, P. B., S. Bladwin & A. S. Flecker, 2004. Effects of behavioral and morphological plasticity on risk of predation in a Neotropical tadpole. Oecologia 141: 130–138.

    Article  PubMed  Google Scholar 

  • Montgomery, B. E., 1947. The distribution and relative seasonal abundance of Indiana species of five families of dragonflies (Odonata, Calopterygidae, Petaluridae, Cordulegasteridae, Gomphidae, and Aeshnidae). Proceedings of the Indiana Academy of Science 56: 163–169.

    Google Scholar 

  • Nyström, P., 2002. Ecology. In Holdich, D. M. (ed.), Biology of Freshwater Crayfish. Blackwell Science, United Kingdom: 192–235.

    Google Scholar 

  • Owen, J. D., T. J. Devitt, L. A. Colucci & N. F. Bendik, 2016. Eurycea sosorum (Barton Springs salamander). Predation and diet. Herpetological Review 47: 275.

    Google Scholar 

  • Poiani, K. A., B. D. Richter, M. G. Anderson & H. E. Richter, 2000. Biodiversity conservation at multiple scales: functional sites, landscapes, and networks. BioScience 50: 133–146.

    Article  Google Scholar 

  • Porej, D. & T. E. Hetherington, 2005. Designing wetlands for amphibians: the importance of predatory fish and shallow littoral zones in structuring amphibian communities. Wetlands Ecology and Management 13: 445–455.

    Article  Google Scholar 

  • Pritchard, G., 1964. The prey of dragonfly larvae (Odonata; Anisoptera) in ponds in northern Alberta. Canadian Journal of Zoology 42: 785–800.

    Article  Google Scholar 

  • Pritchard, G., 1965. Prey capture by dragonfly larvae (Odonata; Anisoptera). Canadian Journal of Zoology 43: 271–289.

    Article  Google Scholar 

  • Puttlitz, M. H., D. P. Chivers, J. M. Kiesecker & A. R. Blaustein, 1999. Threat-sensitive predator avoidance by larval Pacific treefrogs (Amphibia, Hylidae). Ethology 105: 449–456.

    Article  Google Scholar 

  • Siegel, S., 1956. Nonparametric Statistics for the Behavioral Sciences. McGraw-Hill, USA.

    Google Scholar 

  • Skelly, D. K., 1994. Activity level and the susceptibility of anuran larvae to predation. Animal Behaviour 47: 464–468.

    Article  Google Scholar 

  • Storfer, A. & C. White, 2004. Phenotypically plastic responses of larval tiger salamanders, Ambystoma tigrinum, to different predators. Journal of Herpetology 38: 612–615.

    Article  Google Scholar 

  • Tarr, T. L. & K. J. Babbitt, 2002. Effects of habitat complexity and predator identity on predation of Rana clamitans larvae. Amphibia-Reptilia 23: 13–20.

    Article  Google Scholar 

  • Van Buskirk, J. & R. A. Relyea, 1998. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biological Journal of the Linnean Society 65: 301–328.

    Article  Google Scholar 

  • Van Buskirk, J., P. Anderwald, S. Lüpold, L. Reinhardy & H. Schuler, 2003. The lure effect, tadpole tail shape, and the target of dragonfly strikes. Journal of Herpetology 37: 420–424.

    Article  Google Scholar 

  • Vollmer, K. L. & B. G. Gall, 2014. Complex predator–prey interactions between the rusty crayfish (Orconectes rusticus) and invertebrate and vertebrate prey within their native range. Journal of Freshwater Ecology 29: 267–277.

    Article  CAS  Google Scholar 

  • Woody, D. R. & A. Mathis, 1998. Acquired recognition of chemical stimuli from an unfamiliar predator: Associative learning by adult newts, Notophthalmus viridescens. Copeia 1998: 1027–1031.

    Article  Google Scholar 

  • Yurewicz, K. L., 2004. A growth/mortality trade-off in larval salamanders and the coexistence of intraguild predators and prey. Oecologia 138: 102–111.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Brandt, J. Fries, V. Cantu, and the San Marcos Aquatic Resources Center (SMARC) for logistical support and use of both facilities and experimental animals. We also thank the City of Austin and L. Colucci for generously providing permission to use photographs, N. Bendik for providing crayfish abundance data, K. Pitcher for helpful discussion on invertebrates, and M. Dixon for statistical advice. Funding for this study was provided by the Texas Academy of Science and the Texas State University Undergraduate Research Initiative. Helpful comments on this manuscript were provided by J. Farkas, the GrEBE Discussion Group at the University of South Dakota, and two anonymous reviewers. This experiment was conducted under an approved Texas State University IACUC protocol (#01-039-028) and permits for captive salamanders are maintained by the SMARC (TPWD SPR-0390-045; USFWS TE676811-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Drew R. Davis.

Additional information

Handling editor: Lee B. Kats

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, D.R., DeSantis, D.L. & Gabor, C.R. Antipredator behavior of the Barton Springs salamander (Eurycea sosorum) in response to aquatic invertebrates: potential consequences of habitat restoration. Hydrobiologia 795, 129–137 (2017). https://doi.org/10.1007/s10750-017-3124-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-017-3124-4

Keywords

Navigation