Skip to main content

Advertisement

Log in

Environmental filtering and taxonomic relatedness underlie the species richness–evenness relationship

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We examined the relationship between species richness (S) and evenness (J) within a novel, community assembly framework. We hypothesized that environmental stress leads to filtering (increasing the proportional abundance of tolerant species) and taxonomic dispersion (decreasing the number of species within genera and families). Environmental filtering would cause a decline in S by eliminating some stress-sensitive species and a reduction of J by allowing only tolerant species to maintain large populations. Taxonomic relatedness may influence both S and J by controlling the nature of interspecific interactions—positive under taxonomic dispersion versus negative under taxonomic clustering. Therefore, the S–J relationship may be a product of environmental filtering and taxonomic relatedness. We tested this framework with redundancy analyses and structural equation models using continental stream diatom and fish data. We confirmed that (i) environmental stress, defined by watershed forest cover, slope, and temperature, caused filtering (lower sensitive:tolerant species abundance ratios) and taxonomic dispersion (elevated genus:species richness and family:species richness ratios); (ii) S and J, which declined with filtering and taxonomic dispersion, exhibited a positive relationship; and (iii) the role of filtering on J was pronounced only under stressful conditions, while taxonomic dispersion remained an important predictor of J across stressful and favorable environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerly, D. D. & W. K. Cornwell, 2007. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters 10: 135–145.

    Article  CAS  PubMed  Google Scholar 

  • Agawin, N. S. R., S. Rabouille, M. J. W. Veldhuis, L. Servatius, S. Hol, H. M. J. van Overzee & J. Huisman, 2007. Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non-nitrogen-fixing phytoplankton species. Limnology and Oceanography 52: 2233–2248.

    Article  CAS  Google Scholar 

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35: 257–284.

    Article  Google Scholar 

  • Barrio, I. C., D. S. Hik, C. G. Bueno & J. F. Cahill, 2013. Extending the stress-gradient hypothesis – is competition among animals less common in harsh environments? Oikos 122: 516–523.

    Article  Google Scholar 

  • Bertness, M. D. & R. Callaway, 1994. Positive interactions in communities. Trends in Ecology & Evolution 9: 191–193.

    Article  CAS  Google Scholar 

  • Blois, J. L., J. L. McGuire & E. A. Hadly, 2010. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465: 771–774.

    Article  CAS  PubMed  Google Scholar 

  • Bock, C. E., Z. F. Jones & J. H. Bock, 2007. Relationships between species richness, evenness, and abundance in a southwestern savanna. Ecology 88: 1322–1327.

    Article  PubMed  Google Scholar 

  • Brown, J. H., V. K. Gupta, B. L. Li, B. T. Milne, C. Restrepo & G. B. West, 2002. The fractal nature of nature: power laws, ecological complexity and biodiversity. Philosophical Transactions of the Royal Society of London Series B – Biological Sciences 357: 619–626.

    Article  PubMed  Google Scholar 

  • Bruno, J. F., J. J. Stachowicz & M. D. Bertness, 2003. Inclusion of facilitation into ecological theory. Trends in Ecology & Evolution 18: 119–125.

    Article  Google Scholar 

  • Cattaneo, A., A. Asioli, P. Comoli & M. Manca, 1998. Organisms’ response in a chronically polluted lake supports hypothesized link between stress and size. Limnology & Oceanography 43: 1938–1943.

    Article  Google Scholar 

  • Dangles, O. & B. Malmqvist, 2004. Species richness–decomposition relationships depend on species dominance. Ecology Letters 7: 395–402.

    Article  Google Scholar 

  • Feio, M. J., C. N. Coimbra, M. A. S. Graca, S. J. Nichols & R. H. Norris, 2010. The influence of extreme climatic events and human disturbance on macroinvertebrate community patterns of a Mediterranean stream over 15 y. Journal of the North American Benthological Society 29: 1397–1409.

    Article  Google Scholar 

  • Griffiths, D., C. McGonigle & R. Quinn, 2014. Climate and species richness patterns of freshwater fish in North America and Europe. Journal of Biogeography 41: 452–463.

    Article  Google Scholar 

  • He, Q., M. D. Bertness & A. H. Altieri, 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters 16: 695–706.

    Article  PubMed  Google Scholar 

  • Hill, W. R., B. J. Roberts, S. N. Francoeur & S. E. Fanta, 2011. Resource synergy in stream periphyton communities. Journal of Ecology 99: 454–463.

    Google Scholar 

  • Hillebrand, H., D. S. Gruner, E. T. Borer, M. E. S. Bracken, E. E. Cleland, J. J. Elser, W. S. Harpole, J. T. Ngai, E. W. Seabloom, J. B. Shurin & J. E. Smith, 2007. Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proceedings of the National Academy of Sciences of the Unites States of America 104: 10904–10909.

    Article  CAS  Google Scholar 

  • HilleRisLambers, J., P. B. Adler, W. S. Harpole, J. M. Levine & M. M. Mayfield, 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology Evolution and Systematics 43: 227–248.

    Article  Google Scholar 

  • Ingram, T. & J. B. Shurin, 2009. Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages. Ecology 90: 2444–2453.

    Article  PubMed  Google Scholar 

  • Keddy, P. A., 1992. Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science 3: 157–164.

    Article  Google Scholar 

  • Kennedy, T. A., S. Naeem, K. M. Howe, J. M. H. Knops, D. Tilman & P. Reich, 2002. Biodiversity as a barrier to ecological invasion. Nature 417: 636–638.

    Article  CAS  PubMed  Google Scholar 

  • Kimbro, D. L. & E. D. Grosholz, 2006. Disturbance influences oyster community richness and evenness, but not diversity. Ecology 87: 2378–2388.

    Article  PubMed  Google Scholar 

  • Knouft, J. H. & L. M. Page, 2011. Assessment of the relationships of geographic variation in species richness to climate and landscape variables within and among lineages of North American freshwater fishes. Journal of Biogeography 38: 2259–2269.

    Article  Google Scholar 

  • Larson, C. A. & S. I. Passy, 2013. Rates of species accumulation and taxonomic diversification during phototrophic biofilm development are controlled by both nutrient supply and current velocity. Applied and Environmental Microbiology 79: 2054–2060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur, R. & R. Levins, 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101: 377–385.

    Article  Google Scholar 

  • Maire, V., N. Gross, L. Borger, R. Proulx, C. Wirth, L. D. Pontes, J. F. Soussana & F. Louault, 2012. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytologist 196: 497–509.

    Article  PubMed  Google Scholar 

  • Mayfield, M. M. & J. M. Levine, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13: 1085–1093.

    Article  PubMed  Google Scholar 

  • Montaña, C. G., K. O. Winemiller & A. Sutton, 2014. Intercontinental comparison of fish ecomorphology: null model tests of community assembly at the patch scale in rivers. Ecological Monographs 84: 91–107.

    Article  Google Scholar 

  • Mouchet, M. A., M. D. M. Burns, A. M. Garcia, J. P. Vieira & D. Mouillot, 2013. Invariant scaling relationship between functional dissimilarity and co-occurrence in fish assemblages of the Patos Lagoon estuary (Brazil): environmental filtering consistently overshadows competitive exclusion. Oikos 122: 247–257.

    Article  Google Scholar 

  • Mouillot, D., O. Dumay & J. A. Tomasini, 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine Coastal and Shelf Science 71: 443–456.

    Article  Google Scholar 

  • Murphy, G. E. P. & T. N. Romanuk, 2014. A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution 4: 91–103.

    Article  PubMed  Google Scholar 

  • Oberdorff, T., B. Hugueny, A. Compin & D. Belkessam, 1998. Non-interactive fish communities in the coastal streams of North-western France. Journal of Animal Ecology 67: 472–484.

    Article  Google Scholar 

  • Passy, S. I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquatic Botany 86: 171–178.

    Article  Google Scholar 

  • Passy, S. I., 2008. Continental diatom biodiversity in stream benthos declines as more nutrients become limiting. Proceedings of the National Academy of Sciences of the Unites States of America 105: 9663–9667.

    Article  CAS  Google Scholar 

  • Passy, S. I., 2012. A hierarchical theory of macroecology. Ecology Letters 15: 923–934.

    Article  PubMed  Google Scholar 

  • Passy, S. I., 2015. Data from: abundance inequality in freshwater communities has an ecological origin. American Naturalist, Dryad Digital Repository. doi:10.5061/dryad.gv24p.

  • Passy, S. I., 2016. Abundance inequality in freshwater communities has an ecological origin. American Naturalist 187: 502–516.

    Article  PubMed  Google Scholar 

  • Passy, S. I. & P. Legendre, 2006. Power law relationships among hierarchical taxonomic categories in algae reveal a new paradox of the plankton. Global Ecology and Biogeography 15: 528–535.

    Article  Google Scholar 

  • Passy, S. I., Y. Pan & R. L. Lowe, 1999. Ecology of the major periphytic diatom communities from the Mesta River, Bulgaria. International Review of Hydrobiology 84: 129–174.

    CAS  Google Scholar 

  • Peres-Neto, P. R., 2004. Patterns in the co-occurrence of fish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia 140: 352–360.

    Article  PubMed  Google Scholar 

  • Peters, R. H., 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Rimet, F. & A. Bouchez, 2012. Life-forms, cell-size and ecological guilds of freshwater diatoms. Knowledge and Management of Aquatic Ecosystems 406: 01. doi:10.1051/kmae/2012018.

    Article  Google Scholar 

  • Sabater, S., 2000. Diatom communities as indicators of environmental stress in the Guadiamar River, S-W. Spain, following a major mine tailings spill. Journal of Applied Phycology 12: 113–124.

    Article  CAS  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2006. Self-organized similarity, the evolutionary emergence of groups of similar species. Proceedings of the National Academy of Sciences of the United States of America 103: 6230–6235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scrosati, R. & C. Heaven, 2007. Spatial trends in community richness, diversity, and evenness across rocky intertidal environmental stress gradients in eastern Canada. Marine Ecology Progress Series 342: 1–14.

    Article  Google Scholar 

  • Shmida, A. & M. V. Wilson, 1985. Biological determinants of species diversity. Journal of Biogeography 12: 1–20.

    Article  Google Scholar 

  • Soininen, J. & P. Eloranta, 2004. Seasonal persistence and stability of diatom communities in rivers: are there habitat specific differences? European Journal of Phycology 39: 153–160.

    Article  Google Scholar 

  • Soininen, J., S. Passy & H. Hillebrand, 2012. The relationship between species richness and evenness: a meta-analysis of studies across aquatic ecosystems. Oecologia 169: 803–809.

    Article  PubMed  Google Scholar 

  • Stevenson, R. J. & R. Glover, 1993. Effects of algal density and current on ion transport through periphyton communities. Limnology and Oceanography 38: 1276–1281.

    Article  CAS  Google Scholar 

  • Stirling, G. & B. Wilsey, 2001. Empirical relationships between species richness, evenness, and proportional diversity. American Naturalist 158: 286–299.

    Article  CAS  PubMed  Google Scholar 

  • Stubbs, W. J. & J. B. Wilson, 2004. Evidence for limiting similarity in a sand dune community. Journal of Ecology 92: 557–567.

    Article  Google Scholar 

  • Valiente-Banuet, A. & M. Verdu, 2007. Facilitation can increase the phylogenetic diversity of plant communities. Ecology Letters 10: 1029–1036.

    Article  PubMed  Google Scholar 

  • Venail, P. A. & M. J. Vives, 2013. Phylogenetic distance and species richness interactively affect the productivity of bacterial communities. Ecology 94: 2529–2536.

    Article  PubMed  Google Scholar 

  • Venail, P. A., A. Narwani, K. Fritschie, M. A. Alexandrou, T. H. Oakley & B. J. Cardinale, 2014. The influence of phylogenetic relatedness on species interactions among freshwater green algae in a mesocosm experiment. Journal of Ecology 102: 1288–1299.

    Article  Google Scholar 

  • Violle, C., D. R. Nemergut, Z. C. Pu & L. Jiang, 2011. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14: 782–787.

    Article  PubMed  Google Scholar 

  • Wang, J., C. B. Zhang, T. Chen & W. H. Li, 2013. From selection to complementarity: the shift along the abiotic stress gradient in a controlled biodiversity experiment. Oecologia 171: 227–235.

    Article  PubMed  Google Scholar 

  • Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33: 475–505.

    Article  Google Scholar 

  • Weiher, E. & P. A. Keddy, 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159–164.

    Article  Google Scholar 

  • Wilsey, B. J. & C. Potvin, 2000. Biodiversity and ecosystem functioning: importance of species evenness in an old field. Ecology 81: 887–892.

    Article  Google Scholar 

  • Wittebolle, L., M. Marzorati, L. Clement, A. Balloi, D. Daffonchio, K. Heylen, P. De Vos, W. Verstraete & N. Boon, 2009. Initial community evenness favours functionality under selective stress. Nature 458: 623–626.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank L. Bini and two anonymous reviewers for thoughtful suggestions, which improved the clarity of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia I. Passy.

Additional information

Handling editor: Luis Mauricio Bini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passy, S.I., Bottin, M., Soininen, J. et al. Environmental filtering and taxonomic relatedness underlie the species richness–evenness relationship. Hydrobiologia 787, 243–253 (2017). https://doi.org/10.1007/s10750-016-2968-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2968-3

Keywords

Navigation