Skip to main content

Advertisement

Log in

Exposure to waterborne copper and high temperature induces the formation of reactive oxygen species and causes mortality in the Amazonian fish Hoplosternum littorale

  • ADAPTA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Hoplosternum littorale is an Amazon fish that lives in urban areas surrounded by polluted igarapés, where elevated copper concentrations eventually occur. The central goal of this study was to evaluate the associated effects of high temperature and copper contamination on survival time and biochemical responses of the Amazonian fish species H. littorale. We exposed fish to two nominal dissolved copper concentrations (50 and 500 µg l−1) and combined temperatures of 28 and 34°C. Our findings showed that the combination of these variables affects the survival time of this species. The activity of the biotransformation enzymes ethoxyresorufin-O-deethylase and glutathione-S-transferase showed no alterations in fish within all treatments. The increase of reactive oxygen species and the decrease in potential total antioxidant capacity promoted the imbalance in the antioxidant system. An induction in superoxide dismutase activity occurred in fish exposed to copper concentrations of 50 and 500 µg l−1 at both temperatures, suggesting liver impairments. Thus, we suggest that H. littorale is sensitive to copper, and this sensitivity is increased further with exposure to high temperatures, particularly in the survival time and reactive oxygen species formation of this fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amado, L. L., M. L. Garcia, P. B. Ramos, R. F. Freitas, B. Zafalon, J. L. R. Ferreira, J. S. Yunes & J. M. Monserrat, 2009. A method to measure total antioxidant capacity against peroxyl radicals in aquatic organisms: application to evaluate microcystins toxicity. Science of the Total Environment 407: 2115–2123.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho, C. S. & M. N. Fernandes, 2006. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251: 109–117.

    Article  CAS  Google Scholar 

  • Clarke, F. E., 1950. Determination of chloride in water improved colorimetric and titrimetric methods. Analytical Biochemistry 22: 553–555.

    CAS  Google Scholar 

  • Cusimano, R. F., D. F. Brakke & G. A. Chapman, 1986. Effects of pH on the toxicities of cadmium, copper, and zinc to steelhead trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences 43: 1497–1503.

    Article  CAS  Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences 106: 12788–12793.

    Article  CAS  Google Scholar 

  • Duarte, R. M., A. C. L. Menezes, L. S. Rodrigues, V. M. F. Almeida-Val & A. L. Val, 2009. Copper sensitivity of wild ornamental fish of the Amazon. Ecotoxicology and Environmental Safety 72: 693–698.

    Article  CAS  PubMed  Google Scholar 

  • Erickson, R. J., D. A. Benoit, V. R. Mattson, H. P. N. Jr & E. N. Leonard, 1996. The effects of water chemistry on the toxicity of copper to fathead minnows. Environmental Toxicology and Chemistry 15: 181–193.

    Article  CAS  Google Scholar 

  • Flohé, L. & F. Ötting, 1984. Superoxide dismutase assays. Methods in Enzymology 105: 93–94.

    Article  PubMed  Google Scholar 

  • Frenzilli, G., M. Nigro & B. P. Lyons, 2009. The Comet assay for the evaluation of genotoxic impact in aquatic environments. Mutation Research/Reviews in Mutation Research 681: 80–92.

    Article  CAS  Google Scholar 

  • Geracitano, L., J. M. Monserrat & A. Bianchini, 2002. Physiological and antioxidant enzyme responses to acute and chronic exposure of Laeonereis acuta (Polychaeta, Nereididae) to copper. Journal of Experimental Marine Biology and Ecology 277: 145–156.

    Article  CAS  Google Scholar 

  • Gomiero, A. & A. Viarengo, 2014. Effects of elevated temperature on the toxicity of copper and oxytetracycline in the marine model, Euplotes crassus: a climate change perspective. Environmental Pollution 194: 262–271.

    Article  CAS  PubMed  Google Scholar 

  • Grosell, M., 2012. Copper. In Wood, C. M., A. P. Farrel & C. J. Brauner (eds), Homeostasis and Toxicology of Essential Metals. Academic Press, San Diego: 54–110.

    Google Scholar 

  • Gustafsson, J. P., 2010. Visual MINTEQ (version 3.0). Department of Land and Water Resources Engineering. The Royal Institute of Technology, Stockholm.

  • Hoorn, C., F. P. Wesselingh, M. A. Bermudez, A. Mora, I. Sanmartín, A. Sanchez-Meseguer, C. L. Anderson, J. P. Figueiredo, C. Jaramillo, D. Riff, F. R. Negri, H. Hooghiemstra, J. Lundberg, T. Stadler, T. Särkinen & A. Antonelli, 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.

    Article  CAS  PubMed  Google Scholar 

  • Hodson, P. V., P. J. Kloepper-Sams, K. R. Munkittrick, W. L. Lockhart, D. A. Metner, P. L. Luxon, I. R. Smith, M. M. Gagnon, M. Servos & J. F. Payne, 1991. Protocols for measuring mixed function oxygenases of fish livers. Canadian Technical Report of Fisheries and Aquatic Sciences 1829: 33–49.

    Google Scholar 

  • IPCC, 2013. Fifth Assessment Report on Climate Change 2013: The physical science basis, final draft underlying scientific-technical assessment. Intergovernmental Panel on Climate Change. Working Group 1, Geneva.

  • Jiang, Z. Y., A. C. S. Woollard & S. Wolf, 1991. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange – comparison with the TBA assay and an iodometric method. Lipids 26: 853–856.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W. D., Y. Liu, K. Hu, J. Jiang, S. H. Li, L. Feng & X. Q. Zhou, 2014. Copper exposure induces oxidative injury, disturbs the antioxidant system and changes the Nrf2/ARE (CuZnSOD) signaling in the fish brain: protective effects of myo-inositol. Aquatic Toxicology 155: 301–313.

    Article  CAS  PubMed  Google Scholar 

  • Jomova, K., S. Baros & M. Valko, 2012. Redox active metal-induced oxidative stress in biological systems. Transition Metal Chemistry 37: 127–134.

    Article  CAS  Google Scholar 

  • Jones, D. P., 2006. Redefining oxidative stress. Antioxidants & Redox Signaling 8: 1865–1879.

    Article  CAS  Google Scholar 

  • Keen, J. H., W. H. Habig & W. B. Jakoby, 1976. Mechanism for the several activities of the glutathione-S-transferase. Journal of Biological Chemistry 251: 6183–6188.

    CAS  PubMed  Google Scholar 

  • Kehrer, J. P., 2000. The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149: 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S., K. Ji & K. Choi, 2014. Effects of water temperature on perchlorate toxicity to the thyroid and reproductive system of Oryzias latipes. Ecotoxicology and Environmental Safety 108: 311–317.

    Article  CAS  PubMed  Google Scholar 

  • Lushchak, V. I., 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology 101: 13–30.

    Article  CAS  PubMed  Google Scholar 

  • Lushchak, V. I. & T. V. Bagnyukova, 2006. Temperature increase results in oxidative stress in goldfish tissues. 1. Indices of oxidative stress. Comparative Biochemistry and Physiology, Part C 143: 30–35.

    Google Scholar 

  • Matsuo, A. Y. O., R. C. Playle, A. L. Val & C. M. Wood, 2004. Physiological action of dissolved organic matter in rainbow trout in the presence and absence of copper: sodium uptake kinetics and unidirectional flux rates in hard and softwater. Aquatic Toxicology 70: 63–81.

    Article  CAS  PubMed  Google Scholar 

  • Matsuo, A. Y. O., C. M. Wood & A. L. Val, 2005. Effects of copper and cadmium on ion transport and gill metal binding in the Amazonian teleost tambaqui (Colossoma macropomum) in extremely soft water. Aquatic Toxicology 74: 351–364.

    Article  CAS  PubMed  Google Scholar 

  • Monteiro, S. M., N. Santos, M. Calejo, A. Fontainhas-Fernandes & M. Sousa, 2009. Copper toxicity in gills of the teleost fish, Oreochromis niloticus: effects in apoptosis induction and cell proliferation. Aquatic Toxicology 94: 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Mora, C. & M. F. Moya, 2006. Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. Journal of Thermal Biology 31: 337–341.

    Article  Google Scholar 

  • Noyes, P. D., M. K. McElwee, H. D. Miller, B. W. Clark, L. A. Van Tiem, K. C. Walcott, K. N. Erwin & E. D. Levin, 2009. The toxicology of climate change: environmental contaminants in a warming world. Environment International 35: 971–986.

    Article  CAS  PubMed  Google Scholar 

  • Osman, A. G. M., A. M. Abd El Reheem, K. Y. AbuelFadl & A. G. GadEl-Rab, 2010. Enzymatic and histopathologic biomarkers as indicators of aquatic pollution in fishes. Natural Science 2: 1302–1311.

    Article  CAS  Google Scholar 

  • Playle, R. C., D. G. Dixon & K. Burnissn, 1993. Copper and cadmium binding to fish gills: estimates of metal-gill stability constants and modelling of metal accumulation. Canadian Journal of Fisheries and Aquatic Sciences 50: 2667–2677.

    Article  CAS  Google Scholar 

  • Pottinger, T. G., T. R. Carrick & W. E. Yeomans, 2002. The three-spined stickleback as an environmental sentinel: effects of stressors on whole-body physiological indices. Journal Fish Biology 61: 207–229.

    Article  Google Scholar 

  • Richards, J. G., B. K. Burnison & R. C. Playle, 1999. Natural and commercial dissolved organic matter protects against the physiological effects of a combined cadmium and copper exposure on rainbow trout (Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences 56: 407–418.

    Article  CAS  Google Scholar 

  • Rose, W. L., R. M. Nisbet, P. G. Green, S. Norris, T. Fan, E. H. Smith, G. N. Cherr & S. L. Anderson, 2006. Using an integrated approach to link biomarker responses and physiological stress to growth impairment of cadmium-exposed larval topsmelt. Aquatic Toxicology 80: 298–308.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, W., O. Palluel, L. Meunier, M. Coquery, J. M. Porcher & S. Ait-Aıssa, 2005. Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environmental Toxicology and Pharmacology 19: 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Schiedek, D., B. Sundelin, J. W. Readman & R. W. Macdonald, 2007. Interactions between climate change and contaminants. Marine Pollution Bulletin 54: 1845–1856.

    Article  CAS  PubMed  Google Scholar 

  • Sokolova, I. M. & G. Lanning, 2008. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Climate Research 37: 181–201.

    Article  Google Scholar 

  • Straile, D., D. M. Livingstone, G. A. Weyhenmeyer & D. G. George, 2013. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In: The North Atlantic Oscillation: Climatic Significance and Environmental Impact, pp. 263–279.

  • Stohs, S. J. & D. Bagchi, 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine 18: 321–336.

    Article  CAS  PubMed  Google Scholar 

  • Valko, M. M. H. C. M., H. Morris & M. T. D. Cronin, 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12: 1161–1208.

    Article  CAS  PubMed  Google Scholar 

  • Van der Oost, R., J. Beyer & N. P. E. Vermeulen, 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology 13: 57–149.

    Article  PubMed  Google Scholar 

  • Vieira, L. R., C. Gravato, A. M. V. M. Soares, F. Morgado & L. Guilhermino, 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere 76: 1416–1427.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., X. Long, Y. Cheng, Z. Liu & S. Yan, 2014. The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquatic Toxicology 152: 96–104.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, P. G., J. F. Skidmore, D. J. Spry, D. G. Dixon, P. V. Hodson, N. J. Hutchinson & B. E. Hickie, 1993. Effect of pH and dissolved organic carbon on the toxicity of copper to larval fathead minnow (Pimephales promelas) in natural lake waters of low alkalinity. Canadian Journal of Fisheries and Aquatic Sciences 50: 1356–1362.

    Article  CAS  Google Scholar 

  • Wood, C. M., H. A. Al-Reasi & D. S. Smith, 2011. The two faces of DOC. Aquatic Toxicology 105S: 3–8.

    Article  Google Scholar 

  • Worms, I., D. F. Simon, C. S. Hassler & K. J. Wilkinson, 2006. Bioavailability of trace metals to aquatic microorganisms: importance of chemical, biological and physical processes on biouptake. Biochimie 88: 1721–1731.

    Article  CAS  PubMed  Google Scholar 

  • Yu-Ting Lim, M., A. M. Zimmer & C. M. Wood, 2015. Acute exposure to waterborne copper inhibits both the excretion and uptake of ammonia in freshwater rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry Physiology Part C 168: 48–54.

    Google Scholar 

  • Zar, J. K., 1984. Biostatistical Analysis. Prentice-Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgments

We acknowledge the joint grant from the Brazilian National Research Council (CNPq) and Amazonas State Research Foundation (FAPEAM) to ADAPTA Project (Environmental Adaptations of Aquatic Organisms) that supported this work. We thank Maria de Nazaré Paula-Silva for all support during the ADAPTA expedition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Braz-Mota.

Additional information

Guest editors: Adalberto L. Val, Gudrun De Boeck & Sidinei M. Thomaz / Adaptation of Aquatic Biota of the Amazon

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braz-Mota, S., Fé, L.M.L., Delunardo, F.A.C. et al. Exposure to waterborne copper and high temperature induces the formation of reactive oxygen species and causes mortality in the Amazonian fish Hoplosternum littorale . Hydrobiologia 789, 157–166 (2017). https://doi.org/10.1007/s10750-016-2847-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2847-y

Keywords

Navigation