Skip to main content

Advertisement

Log in

Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient

  • PLANTS IN AQUATIC SYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this study was to explore the environmental drivers of the aquatic macrophyte assemblage in a large, heterogeneous Spanish region covering a wide altitudinal range. We hypothesized that physicochemical variables affecting assemblages would differ depending on altitude. The study was conducted in 46 plateau ponds and 21 mountain ponds. Our results revealed a shift in hydrophyte assemblage composition and structure along an altitude and water chemistry gradient. However, altitude was not a good predictor of species richness. Conductivity and nutrient concentrations were higher in plateau ponds than in mountain ponds and binary logistic regression showed that conductivity was the best variable for differentiating between both pond types. Canonical correspondence analysis indicated that conductivity was the main factor responsible for the species distribution in both pond types. Generalized linear models showed that in plateau ponds, total phosphorus and mean depth were the strongest predictors of submerged macrophyte coverage, and no model could be created for richness. In the mountain ponds, conductivity and pond area explained coverage of submerged plants, while richness was related to pond area. Our results corroborated the hypothesis to be tested, and the conclusions obtained may be of relevance for making decisions on conservation and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdo, M. S. A. & C. J. Da Silva, 2002. Nutrient stock in the aquatic macrophytes Eichornia crassipes and Pistia stratiotes in the Pantanal, Brazil. In Lieberei, R., H. K. Bianchi, V. Boehm & C. Reisdorff (eds), Neotropical Ecosystems. Proceedings of the German-Brazilian Workshop. Hamburg 2000, GKSS-Geesthacht: 875–880.

  • Akasaka, M. & N. Takamura, 2011. The relative importance of dispersal and the local environment for species richness in two aquatic plant growth forms. Oikos 120(1): 38–46.

    Article  Google Scholar 

  • Akasaka, M., N. Takamura, H. Mitsuhashi & Y. Kadono, 2010. Effects of land use on aquatic macrophyte diversity and water quality of ponds. Freshwater Biology 55: 902–922.

    Article  Google Scholar 

  • Alvarez Cobelas, M., C. Rojo & D. G. Angeler, 2005. Mediterranean limnology: current status, gaps and the future. Journal of Limnology 64(1): 13–29.

    Article  Google Scholar 

  • APHA, 1989. Standard Methods for the Examination of Water and Wastewater. 17th edition. American Public Health Association, Washington, DC.

  • Armengol, X., M. Antón-Pardo, F. Atiénzar, J. L. Echevarrías & E. Barba, 2008. Limnological variables relevant to the presence of the endangered white-headed duck in southestern Spanish wetlands during a dry period. Acta Zoologica Academia Scintiarum Hungaricae 54(Suppl. 1): 54–60.

    Google Scholar 

  • Bagella, S., S. Gascón, M. C. Caria, J. Sala, M. A. Mariani & D. Boix, 2010. Identifying key environmental factors related to plant and crustacean assemblages in Mediterranean temporary ponds. Biodiversity and Conservation 19: 1749–1768.

    Article  Google Scholar 

  • Barko, J. W., M. S. Adams & N. L. Clesceri, 1986. Environmental factors and their consideration in the management of submerged aquatic vegetation: a review. Journal of Aquatic Plant Management 24: 1–10.

    Google Scholar 

  • Bécares, E., A. Conty, C. Rodríguez & S. Blanco, 2004. Funcionamiento de los lagos someros mediterráneos. Ecosistemas 13(2): 2–16.

    Google Scholar 

  • Beklioglu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean Lakes: workshop conclusions. Hydrobiologia 584: 317–326.

    Article  Google Scholar 

  • Biggs, J., P. Williams, P. Whitfield, P. Nicolet & A. Weatherby, 2005. 15 years of pond assessment in Britain: results and lessons learned from the work of Pond Conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 15: 693–714.

    Article  Google Scholar 

  • Blindow, I., 1992. Decline of charophytes during eutrophication: comparison with angiosperms. Freshwater Biology 28: 9–14.

    Article  Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.

    Article  CAS  Google Scholar 

  • Burks, R. L., G. Mulderij, E. Gross, I. Jones, L. Jacobsen, E. Jeppesen & E. Van Donk, 2006. Center stage: the crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. In Bobbink, R., B. Beltman, J. T. A. Verhoeven & D. F. Whigham (eds.), Wetlands: Functioning, Biodiversity Conservation, and Restoration. Ecological Studies, Vol. 191. Springer, Berlin: 537–559.

    Google Scholar 

  • Cam, E., J. D. Nichols, J. E. Hines, J. R. Sauer, R. Alpizar-Jara & C. H. Flather, 2002. Disentangling sampling and ecological explanations underlying species–area relationships. Ecology 83: 1118–1130.

    Google Scholar 

  • Capers, R. S., R. Selsky, G. J. Bugbee & C. White, 2009. Species richness of both native and invasive aquatic plants influenced by environmental conditions and human activity. Botany 87: 306–314.

    Article  CAS  Google Scholar 

  • Capers, R. S., R. Selsky & G. J. Bugbee, 2010. The relative importance of local conditions and regional processes in structuring aquatic plant communities. Freshwater Biology 55: 952–966.

    Article  Google Scholar 

  • Castroviejo, S., M. Lainz, G. López González, P. Montserrat & F. Múñoz Garmendia et al., 1986, 1990, 1993, 1997, 2001, 2007–2010. Flora Ibérica: Plantas vasculares de la Península Ibérica e Islas Baleares,Vols. I–III, VIII, X, XIV–XV, XVII–XVIII. Real Jardín Botánico, C.S.I.C. Madrid.

  • Céréghino, R., J. Biggs, B. Oertli & S. Declerck, 2008. The ecology of European ponds: defining the characteristics of a neglected freshwater habitat. Hydrobiologia 597: 1–6.

    Article  Google Scholar 

  • Chappuis, E., E. Ballesteros & E. Gacia, 2011. Aquatic macrophytes and vegetation in the Mediterranean area of Catalonia: patterns across an altitudinal gradient. Phytocoenologia 41(1): 35–44.

    Article  Google Scholar 

  • Chappuis, E., E. Ballesteros & E. Gacia, 2012. Distribution and richness of aquatic plants across Europe and Mediterranean countries: patterns, environmental driving factors and comparison with total plant richness. Journal of Vegetation Science 23: 985–997.

    Article  Google Scholar 

  • Chappuis, E., E. Gacia & E. Ballesteros, 2014. Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquatic Botany 113: 72–82.

    Article  Google Scholar 

  • Cirujano, S., J. Cambra, P. M. Sánchez Castillo, A. Meco & N. Flor Arnau, 2008. Flora Ibérica, Algas Continentales: Carófitos (Characeae). Real Jardín Botánico, C.S.I.C. Madrid.

    Google Scholar 

  • Crowder, A. A., J. M. Bristow, M. R. King & S. Vanderkloet, 1977. The aquatic macrophytes of some lakes in southeastern Ontario. Naturaliste Canadien 104: 457–464.

    Google Scholar 

  • Dahlgren, J. P. & J. Ehrlén, 2005. Distribution patterns of vascular plants in lakes – the role of metapopulation dynamics. Ecography 28: 49–58.

    Article  Google Scholar 

  • Declerck, S., M. Vanderstukken, A. Pals, K. Muylaert & L. de Meester, 2007. Plankton biodiversity along a gradient of productivity and its mediation by macrophytes. Ecology 88: 2199–2210.

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo, R., C. Fernández-Aláez & M. Fernández-Aláez, 2011. The relative importance of natural and anthropogenic effects on community composition of aquatic macrophytes in Mediterranean ponds. Marine and Freshwater Research 62: 101–109.

    Google Scholar 

  • Della Bella, V., M. Bazzanti, M. G. Dowgiallo & M. Iberit, 2008. Macrophyte diversity and physico-chemical characteristics of Tyrrhenian coast ponds in central Italy: implications for conservation. Hydrobiologia 597: 85–89.

    Article  CAS  Google Scholar 

  • Deny, P., 1980. Solute movement in submerged angiosperms. Biological Reviews 55: 65–92.

    Article  Google Scholar 

  • Downing, J. A., 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica 29(1): 9–24.

    Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. Melack & J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Duarte, C. M., J. Kalff & R. H. Peters, 1986. Patterns in biomass and cover of aquatic macrophytes in lakes. Canadian Journal of Fisheries and Aquatic Sciences 43: 1900–1908.

    Article  Google Scholar 

  • Edvardsen, A. & R. H. Okland, 2006. Variation in plant species richness in and adjacent to 64 ponds in SE Norwegian agricultural landscapes. Aquatic Botany 85: 79–91.

    Article  Google Scholar 

  • Fernández-Aláez, C., M. Fernández-Aláez & E. Bécares, 1999. Influence of water level fluctuation on the structure and composition of the macrophyte vegetation in two small temporary lakes in the northwest of Spain. Hydrobiologia 415: 155–162.

    Article  Google Scholar 

  • Fernández-Aláez, C., M. Fernández-Aláez, C. Trigal & B. Luis, 2006. Hydrochemistry of northwest Spain ponds and its relationships to groundwaters. Limnetica 25(1–2): 433–452.

    Google Scholar 

  • Fernández-Aláez, M. & C. Fernández-Aláez, 2010. Effects of the intense summer dessication and the autumn filling on the water chemistry in some Mediterranean ponds. Limnetica 29(1): 59–74.

    Google Scholar 

  • Fernández-Aláez, C., M. Fernández-Aláez, N. F. Santiago & M. Aboal, 2012. ID-tax. Catálogo y claves de identificación de organismos del grupo macrófitos utilizados como elementos de calidad en las redes de control del estado ecológico. Ministerio de Agricultura, Alimentación y Medio Ambiente.

  • Figuerola, J. & A. J. Green, 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47: 483–494.

    Article  Google Scholar 

  • Frink, C. R. & W. A. Norvell, 1984. Chemical and physical properties of Connecticut Lakes. Connecticut Agricultural Experiment Station Bulletin No. 817, New Haven, Connecticut.

  • Gacia, E. & J. Peñuelas, 1991. Carbon assimilation of Isoetes 1acustris L. from Pyrenean lakes. Photosynthetica 25: 97–104.

    CAS  Google Scholar 

  • Gacia, E., E. Ballesteros, L. Camarero, O. Delgado, A. Palau, J. L. Riera & J. Catalan, 1994. Macrophytes from lakes in the eastern Pyrenees: community composition and ordination in relation to environmental factors. Freshwater Biology 32: 73–81.

    Article  Google Scholar 

  • García-Baquero, G. & R. M. Crujeiras, 2015. Can environmental constraints determine random patterns of plant species co-occurrence? Ecology and evolution 5(5): 1088–1099.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grillas, P., P. Gauthier, N. Yavercovski & C. Perennou, 2004. Mediterranean Temporary Pools, Issues Relating to Conservation, Functioning and Management, Vol. 1. Station Biologique de la Tour du Valat, Arlek.

    Google Scholar 

  • He, F. & P. Legendre, 2002. Species diversity patterns derived from species-area models. Ecology 85: 1185–1198.

    Google Scholar 

  • Heegaard, E., H. H. Birks, C. E. Gibson, S. J. Smith & S. Wolfe-Murphy, 2001. Species–environmental relationship of aquatic macrophytes in Northern Ireland. Aquatic Botany 70: 175–223.

    Article  Google Scholar 

  • Hrivnák, R., H. Ot’ahel’ová, J. Kochjarová & P. Pal’ove-Balang., 2013. Effect of environmental conditions on species composition of macrophytes – study from two distinct biogeographical regions of Central Europe. Knowledge and Management of Aquatic Ecosystems 411, 09.

  • Hudon, C., S. Lalonde & P. Gagnon, 2000. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences 57: 31–42.

    Article  Google Scholar 

  • Jensén, S., 1977. An objective method for sampling the macrophyte vegetation in lakes. Vegetatio 33: 107–118.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342(343): 151–164.

    Article  Google Scholar 

  • Jones, J. I., W. Li & S. C. Maberly, 2003. Area, altitude aquatic plant diversity. Ecography 26: 411–420.

    Article  Google Scholar 

  • Karttunen, K. & H. Toivonen, 1995. Ecology of aquatic bryophyte assemblage in 54 small Finnish lakes, and their changes in 30 years. Annales Botanici Fennici 32: 75–90.

    Google Scholar 

  • Kotze, D. C. & T. G. O’Connor, 2000. Vegetation variation within and among palustrine wetlands along an altitudinal gradient in KwaZulu-Natal, South Africa. Plant Ecology 146: 77–96.

    Article  Google Scholar 

  • Lacoul, P. & B. Freedman, 2006a. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews. 14: 89–136.

    Article  Google Scholar 

  • Lacoul, P. & B. Freedman, 2006b. Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquatic Botany 84: 3–16.

    Article  Google Scholar 

  • Lauridsen, T. L., E. Jeppesen, S. A. J. Declerck, L. De Meester, J. M. Conde-Porcuna, W. Rommens & S. Brucet, 2015. The importance of environmental variables for submerged macrophyte community assemblage and coverage in shallow lakes: differences between northern and southern Europe. Hydrobiologia 744: 49–61.

    Article  CAS  Google Scholar 

  • Linton, S. & R. Goulder, 2000. Botanical conservation value related to origin and management of ponds. Aquatic Conservation: Marine and Freshwater Ecosystems 10: 77–91.

    Article  Google Scholar 

  • Lodge, D. M., 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41: 195–224.

    Article  Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Mäkelä, S., E. Huitu & L. Arvola, 2004. Spatial patterns in aquatic vegetation composition and environmental covariates along chains of lakes in the Kokemäenjoki watershed (S. Finland). Aquatic Botany 80: 253–269.

    Article  Google Scholar 

  • Medail, F. & P. Quezel, 1999. Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conservation Biology 13: 1510–1513.

    Article  Google Scholar 

  • Meerhoff, M. & E. Jeppesen, 2009. Shallow Lakes and Ponds. In G. E. Likens (ed), Encyclopedia of Inlands Waters, Vol. 2. Elsevier, Oxford: 645–655.

    Chapter  Google Scholar 

  • Mikulyuk, A., S. Sharma, S. Van Egeren, E. Erdmann, M. E. Nault & J. Hauxwell, 2011. The relative role of environmental spatial and land-use patterns in explaining aquatic macrophyte community composition. Canadian Journal of Fisheries and Aquatic Sciences 68: 1778–1789.

    Article  Google Scholar 

  • Miracle, M. R., B. Oertli, R. Céréghino & A. Hull, 2010. Preface: conservation of european ponds-current knowledge and future needs. Limnetica 29(1): 1–8.

    Google Scholar 

  • Morris, K., P. C. Bailey, P. I. Boon & L. Hughes, 2003. Alternative stable states in the aquatic vegetation of shallow urban lakes. Catastrophic loss of aquatic plants consequent to nutrient enrichment. Marine and Freshwater Research 54: 201–215.

    Article  CAS  Google Scholar 

  • Moss, B., D. Stephen, C. Álvarez, E. Becares, W. Van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernández-Aláez, R. J. Franken, F. García-Criado, E. M. Gross, M. Gyllström, L. A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppensen, T. Kairesalo, R. Kornijow, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Noges, T. Noges, M. Nykänen, I. Ott, W. Peczula, E. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujoe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tonno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.

    Article  Google Scholar 

  • Moss, B., D. Stephen, D. M. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Russell, A. Stahl-Delbanco, M. Vensson, K. Vakkilainen, M. Valentín, W. J. Van de Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects on shallow lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1649.

    Article  CAS  Google Scholar 

  • Murphy, K. J., 2002. Plant communities and plant diversity in softwater lakes of northern Europe. Aquatic Botany 73: 287–324.

    Article  Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    Article  CAS  PubMed  Google Scholar 

  • Nurminen, L., 2003. Macrophyte species composition reflecting water quality changes in adjacent water bodies of lake Hiidenvesi, SW Finland. Annales Botanici Fennici 40: 199–208.

    Google Scholar 

  • Oertli B., D. A. Joye, E. Castella, R. Juge & J.-B. Lachavanne, 2000. Diversite´ biologique et typologie e´cologique des e´tangs et petits lacs de Suisse. Swiss Agency for the Environment, Forests and Landscape, Laboratory of Ecology and Aquatic Biology, University of Geneva, Geneva.

  • Penning, W., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. Van Den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.

    Article  CAS  Google Scholar 

  • Pìpalová, I., 2002. Initial impact of low stocking density of grass carp on aquatic macrophytes. Aquatic Botany 73: 9–18.

    Article  Google Scholar 

  • Pond Conservation Group, 1993. A future for Britain’s ponds: An agenda for action. Pond Conservation Group, Oxford.

    Google Scholar 

  • Post, D. M., 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–718.

    Article  Google Scholar 

  • Pulido, C., J. Riera, E. Ballesteros, E. Chappuis & E. Gacia, 2015. Predicting aquatic macrophyte occurrence in soft-water oligotrophic lakes (Pyrenees mountain range). Journal of Limnology 74(1): 143–154.

    Google Scholar 

  • R Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/.

  • Rolon, A. S. & L. Maltchik, 2006. Environmental factors as predictors of aquatic macrophyte richness and composition in wetlands of southern Brazil. Hydrobiologia 556: 221–231.

    Article  CAS  Google Scholar 

  • Rørslett, B., 1991. Principal determinants of aquatic macrophyte richness in northern European lakes. Aquatic Botany 39: 173–193.

    Article  Google Scholar 

  • Ruiz, C., G. Martinez, M. Toro & A. Camacho, 2011. A Review: macrophytes in the Assessment of Spanish Lakes Ecological Status Under the Water Framework Directive (WFD). Ambientalia: 1–25.

  • Sánchez, E., C. Gallardo, M. A. Gaertner, A. Arribas & M. Castro, 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 163–180.

    Article  Google Scholar 

  • Sand-Jensen, K., 1997. Eutrophication and plant communities in Lake Fure during 100 years. In Sand-Jensen, K. & O. Pedersen (eds), Freshwater Biology – Priorities and Development in Danish Research. G.E.C Gad, Copenhagen: 26–53.

    Google Scholar 

  • Sass, L. L., M. A. Bozek, J. A. Hauxwell, K. Wagner & S. Wright, 2010. Response of aquatic macrophytes to human land use perturbations in the watersheds of Wisconsin lakes, USA. Aquatic Botany 93: 1–8.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London.

    Google Scholar 

  • Scheffer, M., G. J. van Geest, K. Zimmer, E. Jeppesen, M. Søndergaard, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in Shallow Lakes and ponds. Oikos 112: 227–231.

    Article  Google Scholar 

  • Søndergaard, M., L. S. Johansson, T. L. Lauridsen, T. B. Jørgensen, L. Liboriussen & E. Jeppesen, 2010. Submerged macrophytes as indicators of the ecological quality of lakes. Freshwater Biology 55: 893–908.

    Article  Google Scholar 

  • Sovari, S. & A. Korhola, 1998. Recent diatom assemblage changes in subartic Lake Saanajärvi, NW Finnish Lapland, and their palaeoenvironmental implications. Journal of Paleolimnology 20: 205–215.

    Article  Google Scholar 

  • Steffen, K., C, Leuschner, U. Müller, G. Wiegleb & T. Becker, 2014. Relationships between macrophyte vegetation and physical and chemical conditions in northwest German running waters. Aquatic Botany 113: 46–55.

    Article  CAS  Google Scholar 

  • Toivonen, H. & P. Huttunen, 1995. Aquatic macrophytes and ecological gradients in 57 small lakes in southern Finland. Aquatic Botany 51: 197–221.

    Article  Google Scholar 

  • Tutin, T. G., V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters & D. A. Webbs (eds.), 1980. Flora Europaea. Cambridge University Press, Cambridge.

    Google Scholar 

  • Van Geest, G. J., F. C. J. M. Roozen, H. Coops, R. M. M. Roijackers, A. D. Buijse, E. T. H. M. Peeters & M. Scheeffer, 2003. Vegetation abundance in lowland flood plan lakes determined by surface area, age and connectivity. Freshwater Biology 48: 440–454.

    Article  Google Scholar 

  • Van Geest, G. J., H. Wolters, F. C. J. M. Roozen, H. Coops, R. M. M. Roijackers, A. D. Buijse & M. Scheeffer, 2005. Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 539: 239–248.

    Article  Google Scholar 

  • Van Groenendael, J., J. Ehrlén & B. M. Svensson, 2000. Dispersal and persistence: population processes and community dynamics. Folia Geobotanica 35(2): 107–114.

    Article  Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Spanish Ministry of Science and Technology (project REN2003–03718/HID), by the Spanish Ministry of Education and Science project (project CGL2006-03927) and by the Junta of Castilla and León (projects LE33/03 and UMC1/04).

Author information

Authors and Affiliations

Authors

Additional information

Guest editors: M. T. O’Hare, F. C. Aguiar, E. S. Bakker & K. A. Wood / Plants in Aquatic Systems – a 21st Century Perspective

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Aláez, C., Fernández-Aláez, M., García-Criado, F. et al. Environmental drivers of aquatic macrophyte assemblages in ponds along an altitudinal gradient. Hydrobiologia 812, 79–98 (2018). https://doi.org/10.1007/s10750-016-2832-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2832-5

Keywords

Navigation