Skip to main content

Advertisement

Log in

Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The maintenance of biodiversity in dynamic landscapes can be explained through the unifying concept of the metacommunity, an ecological system with a changing structure that arises from both the biotic features of its component species and from changing temporal processes. We evaluated the relative importance of environmental factors and spatial factors on the structure of metacommunities of zooplankton in a Neotropical floodplain system, in relation to hydrological dynamics and potential connections among lakes. Zooplankton was sampled from 16 to 22 shallow lakes during droughts and floods in two hydrologically contrasting years. Copepods appeared to be more limited by their dispersal potential, while testate amoebae and rotifers seemed to be controlled mostly by environmental variables. These findings stress the importance of the species sorting metacommunity paradigm for groups with the smallest propagules and adult body sizes. The importance of environmental factors rather than spatial factors was apparent during floods, likely due to the facilitation of animal dispersal by floods. Our results demonstrate that the importance of these factors depends on both the functional traits of major zooplankton groups and the hydrological dynamics of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004a. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4: 255–256.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004b. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Algarte, V. M., L. Rodrigues, V. L. Landeiro, T. Siqueira & L. M. Bini, 2014. Variance partitioning of deconstructed periphyton communities: does the use of biological traits matter? Hydrobiologia 722: 279–290.

    Article  Google Scholar 

  • Allen, C. R., A. S. Garmestani, T. D. Havlicek, P. A. Marquet, G. D. Peterson, C. Restrepo, C. A. Stow & B. E. Weeks, 2006. Patterns in body mass distributions: sifting among alternative hypotheses. Ecology Letters 9: 630–643.

    Article  CAS  PubMed  Google Scholar 

  • Baas Becking, L. G. M., 1934. Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague.

    Google Scholar 

  • Baranyi, C., T. Hein, C. Holarek, S. Keckeis & F. Schiemer, 2002. Zooplankton biomass community structure in a Danube River floodplain system: effects of hydrology. Freshwater Biology 47: 473–482.

    Article  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Bles, E. J., 1929. Arcella. A study in cell physiology. The Quarterly Journal of Microscopical Science 72: 527–648.

    Google Scholar 

  • Borcard, D. & P. Legendre, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153: 51–68.

    Article  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Borcard, D., F. Gillert & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Brando, P. M., M. T. Coe, R. DeFries & A. A. Azevedo, 2013. Ecology, economy and management of an agroindustrial frontier landscape in the southeast Amazon. Philosophical Transactions of the Royal Society B 368: 20120152.

    Article  Google Scholar 

  • Cáceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Article  Google Scholar 

  • Carmouze, J. P., 1994. O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Edgard Blucher, São Paulo.

    Google Scholar 

  • Chick, J., A. Levchuk, K. Medley & J. H. Havel, 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnology and Oceanography: Methods 8: 79–87.

    Article  Google Scholar 

  • Cohen, G. M. & J. B. Shurin, 2003. Scale-dependence and mechanisms of dispersal in freshwater zooplankton. Oikos 103: 603–617.

    Article  Google Scholar 

  • Cottenie, K. & L. De Meester, 2003. Connectivity and cladoceran species richness in a metacommunity of shallow lakes. Freshwater Biology 48: 823–832.

    Article  Google Scholar 

  • Cottenie, K., E. Michels, N. Nuytten & L. De Meester, 2003. Zooplankton metacommunity structure: regional vs. local processes in highly interconnected ponds. Ecology 84: 991–1000.

    Article  Google Scholar 

  • De Bie, T., L. De Meester, L. Brendonck, K. Martens, B. Goddeeris, D. Ercken, H. Hampel, L. Denys, L. Vanhecke, K. Van der Gucht, J. Van Wichelen, W. Vyverman & S. A. J. Declerck, 2012. Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecology Letters 15: 740–747.

    Article  PubMed  Google Scholar 

  • Deflandre, G., 1928. Le genre Arcella Ehrenberg. Archiv für Protistenkunde 64: 152–287.

    Google Scholar 

  • Deflandre, G., 1929. Le genre Centropyxis Stein. Archiv für Protistenkunde 67: 322–375.

    Google Scholar 

  • Dias, J. D., C. C. Bonecker & M. R. Miracle, 2014. The rotifer community and its functional role in lakes of a Neotropical floodplain. International Review of Hydrobiology 99: 72–83.

    Article  Google Scholar 

  • Dudgeon, D., 2003. The contribution of scientific information to the conservation and management of freshwater biodiversity in tropical Asia. Hydrobiologia 500: 295–314.

    Article  Google Scholar 

  • Elmoor-Loureiro, M. A. L., 1997. Manual de identificação de cladóceros límnicos do Brasil. Editora Universa, Brasília.

    Google Scholar 

  • Fernandes, A. P. C., L. S. M. Braghin, J. Nedli, F. Palazzo, F. A. Lansac-Tôha & C. C. Bonecker, 2012. Passive zooplankton community in different environments of a Neotropical floodplain. Acta Scientiarum Biological Sciences 34: 413–418.

    Article  Google Scholar 

  • Fernandes, I. M., R. Henriques-Silva, J. Penha, J. Zuanon & P. R. Peres-Neto, 2014. Spatiotemporal dynamics in a seasonal metacommunity structure is predictable: the case of floodplain-fish communities. Ecography 37: 464–475.

    Google Scholar 

  • Fontaneto, D., 2011. Biogeography of Microscopic Organisms. Is Everything Small Everywhere?. The University of Chicago Press, Chicago.

    Book  Google Scholar 

  • Frisch, D., K. Cottenie, A. Badosa & A. Green, 2012. Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity. PLoS One 7: 1–10.

    Google Scholar 

  • Gauthier-Lièvre, L. & R. Thomas, 1958. Le genre Difflugia, Pentagonia, Maghrebia et Hoogenraadia (Rhizopodes Testacès) en Afrique. Archiv für Protistenkunde 103: 1–370.

    Google Scholar 

  • Gilpin, M. E. & I. A. Hanski, 1991. Metapopulation Dynamics: Empirical and Theoretical Investigations. Academic Press, London.

  • Giné, M. F., H. Bergamin, E. A. Zagatto & B. F. Reis, 1980. Simultaneous determination of nitrate and nitrite by flow injection analysis. Analytica Chimica Acta 114: 191–197.

    Article  Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. Blackwell, Oxford.

    Google Scholar 

  • Gonzalez, A., 2009. Metacommunities: Spatial Community Ecology. Wiley, Chichester.

    Google Scholar 

  • Górski, K., J. J. De Leeuw, H. V. Winter, D. Vekhov, A. E. Minin, A. D. Buijse & L. A. J. Nagelkerke, 2011. Fish recruitment in a large, temperate floodplain: the importance of annual flooding, temperature and habitat complexity. Freshwater Biology 56: 2210–2225.

    Article  Google Scholar 

  • Hájek, M., J. Rolecek, K. Cottenie, K. Kintrová, M. Horsák, A. Poulícková, P. Hájková, M. Fránková & D. Díte, 2011. Environmental and spatial controls of biotic assemblages in a discrete semi-terrestrial habitat: comparison of organisms with different dispersal abilities sampled in the same plots. Journal of Biogeography 38: 1683–1693.

    Article  Google Scholar 

  • Havens, K. E., J. R. Beaver, E. E. Manis & T. L. East, 2015. Inter-lake comparisons indicate that fish predation, rather than high temperature, is the major driver of summer decline in Daphnia and other changes among cladoceran zooplankton in subtropical Florida lakes. Hydrobiologia 750: 57–67.

    Article  CAS  Google Scholar 

  • Heino, J., 2013. The importance of metacommunity ecology for environmental assessment research in the freshwater realm. Biological Reviews 88: 166–178.

    Article  PubMed  Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Article  Google Scholar 

  • Hendrickx, F., J.-P. Maelfait, K. Desender, S. Aviron, D. Bailey, T. Diekotter, L. Lens, J. Liira, O. Schweiger, M. Speelmans, V. Vandomme & R. Bugter, 2009. Pervasive effects of dispersal limitation on within- and among community species richness in agricultural landscapes. Global Ecology and Biogeography 18: 607–616.

    Article  Google Scholar 

  • Holyoak, M., M. A. Leibold & R. D. Holt, 2005. Metacommunities: Spatial Dynamics and Ecological Communities. The University of Chicago Press, Chicago.

    Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Lacerot, J. M. Clemente, F. Scasso, C. Kruk, G. Goyenola, J. García-Alonso, S. L. Amsinck, J. C. Paggi, S. José de Paggi & E. Jeppesen, 2011. High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Article  Google Scholar 

  • Jenkins, K. M. & A. J. Boulton, 2003. Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84: 2708–2723.

    Article  Google Scholar 

  • José De Paggi, S. B. & J. C. Paggi, 2008. Hydrological connectivity as a shaping force in the zooplankton community of two lakes in the Paraná River floodplain. International Review of Hydrobiology 93: 659–678.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Koroleff, K. J. H., 1976. Determination of ammonia. In Grasshoff, E. & E. Kremling (eds), Methods of Seawater Analysis. Verlag Chemie, Weinheim: 117–181.

    Google Scholar 

  • Koste, W., 1978. Rotatoria die Rädertiere Mitteleuropas begründet von Max Voight. Monogononta. Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • Landeiro, V. L., W. E. Magnusson, A. S. Melo, H. V. Espírito-Santo & L. M. Bini, 2011. Spatial eigenfunction analyses in stream networks: do watercourse and overland distances produce different results? Freshwater Biology 56: 1184–1192.

    Article  Google Scholar 

  • Lansac-Tôha, F. A., C. C. Bonecker, L. F. M. Velho, N. R. Simões, J. D. Dias, G. M. Alves & E. M. Takahashi, 2009. Biodiversity of zooplankton communities in the Upper Paraná River floodplain: interannual variation from long-term studies. Brazilian Journal of Biology 69: 539–549.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam.

    Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Leibold, M. A., 2011. The metacommunity concept and its theoretical underpinnings. In Scheiner, S. M. & M. R. Willig (eds), The Theory of Ecology. University Chicago Press, London: 163–183.

    Google Scholar 

  • Leibold, M. A. & J. Norberg, 2004. Biodiversity in metacommunities: plankton as complex adaptive systems? Limnology and Oceanography 49: 1278–1289.

    Article  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter & H. Hillebrand, 2011. Empirical approaches to metacommunities: a review and comparison with theory. Trends in Ecology and Evolution 26: 482–491.

    Article  PubMed  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water analysis: some revised methods for limnologists. Freshwater Biological Association 36: 1–120.

    Google Scholar 

  • Matsumura-Tundisi, T., 1986. Latitudinal distribution of Calanoida copepods in freshwater aquatic systems of Brazil. Brazilian Journal of Biology 46: 527–553.

    Google Scholar 

  • Michels, E., K. Cottenie, L. Neys & L. De Meester, 2001. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442: 117–126.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being: Current State and Trends. Island Press, Washington.

    Google Scholar 

  • Neiff, J. J., 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Neiff, J. J., 1995. Large rivers of South America: toward the new approach. Verhandlungen des Internationalen Verein Limnologie 26: 167–180.

    Google Scholar 

  • Ng, I. S. Y., C. M. Carr & K. Cottenie, 2009. Hierarchical zooplankton metacommunities: distinguishing between high and limiting dispersal mechanisms. Hydrobiologia 619: 133–143.

    Article  Google Scholar 

  • Ning, N. S. P. & D. L. Nielsen, 2011. Community structure and composition of microfaunal egg bank assemblages in riverine and floodplain sediments. Hydrobiologia 661: 211–221.

    Article  Google Scholar 

  • O’Malley, M. A., 2007. The nineteenth century roots of ‘everything is everywhere’. Nature Reviews 5: 647–651.

    PubMed  Google Scholar 

  • Padial, A. A., F. Ceschin, S. A. J. Declerck, L. De Meester, C. C. Bonecker, F. A. Lansac-Tôha, L. Rodrigues, L. C. Rodrigues, S. Train, L. F. M. Velho & L. M. Bini, 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9: e111227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peres-Neto, P. R., L. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Petsch, D. K., G. D. Pinha, J. D. Dias & A. M. Takeda, 2015. Temporal nestedness in Chironomidae and the importance of environmental and spatial factors in species rarity. Hydrobiologia 745: 181–193.

    Article  Google Scholar 

  • Reid, J. W., 1985. Chave de identificação e lista de referências bibliográficas para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim de Zoologia 9: 17–143.

    Google Scholar 

  • Core Team, R., 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Schönborn, W., 1962. Über planktismus und ziklomorphose bei Difflugia limnetica (Levander) Pénard. Limnologica 1: 21–34.

    Google Scholar 

  • Segers, H., 1995. Rotifera: the Lecanidae (Monogonta). Guides to the identification of the micro invertebrates of the continental water of the world. SPB Academic, The Hague.

    Google Scholar 

  • Simões, N. R., F. A. Lansac-Tôha, L. F. M. Velho & C. C. Bonecker, 2012. Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study. Revista de Biología Tropical 60: 1819–1836.

    Article  PubMed  Google Scholar 

  • Simões, N. R., J. D. Dias, C. M. Leal, L. S. M. Braghin, F. A. Lansac-Tôha & C. C. Bonecker, 2013. Floods control the influence of environmental gradients on the diversity of zooplankton communities in a Neotropical floodplain. Aquatic Sciences 75: 607–617.

    Article  Google Scholar 

  • Soininen, J., M. Kokocinski, S. Estlander, J. Kotanen & J. Heino, 2007. Neutrality, niches, and determinants of plankton metacommunity structure across boreal wetland ponds. Ecoscience 14: 146–154.

    Article  Google Scholar 

  • Suzuki, H. I., A. A. Agostinho, D. Bailly, M. F. Gimenes, H. F. Júlio-Junior & L. C. Gomes, 2009. Inter-annual variations in the abundance of young-of-the-year of migratory fishes in the Upper Paraná River floodplain: relations with hydrographic attributes. Brazilian Journal of Biology 69: 649–660.

    Article  CAS  Google Scholar 

  • Symons, C. C. & S. E. Arnott, 2013. Regional zooplankton dispersal provides spatial insurance for ecosystem function. Global Change Biology 19: 1610–1619.

    Article  PubMed  Google Scholar 

  • Teixeira, C., J. G. Tundisi & M. B. Kutner, 1965. Plankton studies in a mangrove: the standing-stock and some ecological factors. Boletim do Instituto Oceanográfico 24: 23–41.

    Google Scholar 

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.

    Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008b. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 31: 567–577.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2009. Wind mediated dispersal of freshwater invertebrates in a rock pool metacommunity: differences in dispersal capacities and modes. Hydrobiologia 635: 363–372.

    Article  Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, M. Jocqué, L. Boven, M. Seaman & L. Brendonck, 2010. Species sorting in space and time – the impact of disturbance regime on community assembly in a temporary pool metacommunity. Journal of the North American Benthological Society 29: 1267–1278.

    Article  Google Scholar 

  • Winegardner, A. K., B. K. Jones, I. S. Y. Ng, T. Siqueira & K. Cottenie, 2012. The terminology of metacommunity ecology. Trends in Ecology & Evolution 27: 253–254.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Nupélia and the Graduate Program in Continental Aquatic Environments for logistical support, and PROEX/Capes. The PIAP–PELD LTER site provided financial support, and CNPq provided doctoral, post-doctoral, and Research Productivity scholarships. MM was supported by SNI-ANII and the L’Oréal-UNESCO Women in Science national award (Uruguay). Ciro Y. Joko (Centro de Ensino Unificado do Distrito Federal, Brazil) kindly furnished the drawing of the testate amoebae, rotifers, cladocerans, and copepods used in the conceptual model. We would like to thank the Ichthyology Lab/Nupélia for providing the fish database, particularly Professor Angelo A. Agostinho. We also thank Luc De Meester, Angelo A. Agostinho, Sidinei M. Thomaz, Luiz C. Gomes, and the anonymous reviewers for insightful comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Déo Dias.

Additional information

Handling editor: Karl E. Havens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, J.D., Simões, N.R., Meerhoff, M. et al. Hydrological dynamics drives zooplankton metacommunity structure in a Neotropical floodplain. Hydrobiologia 781, 109–125 (2016). https://doi.org/10.1007/s10750-016-2827-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2827-2

Keywords

Navigation