Skip to main content

Advertisement

Log in

Cold-adapted bacteria from a coastal area of the Ross Sea (Terra Nova Bay, Antarctica): linking microbial ecology to biotechnology

  • BIOLOGY OF THE ROSS SEA
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This review covers available information concerning the bacterial communities inhabiting coastal areas of Terra Nova Bay (Antarctica). Research was mainly focused on seawater, sediment, and benthic filter feeders. Coping with adverse environmental conditions, Antarctic bacteria have evolved peculiar strategies to survive in this harsh environment. In addition to cellular modifications, antagonistic interactions between them might have contributed to their adaptation to permanently low temperatures by reducing the presence of microbial competitors. The interrelationships existing among the members of bacterial communities, between them and their surrounding environment will be discussed. Quite interestingly, environmental selective pressures have led to the evolution of metabolic pathways responsible for the synthesis of unique secondary metabolites exhibiting a variety of biological activities. Finally, human perturbations have posed a serious questioning about the ability of microbial communities to respond to environmental anthropogenic changes in Antarctica. From a biotechnological viewpoint, bacteria inhabiting Terra Nova Bay are intriguing; indeed, many of them are able to degrade hydrocarbons and polychlorinated biphenyls at low temperatures, and tolerate heavy metals and antibiotics. After a brief description of cold-adapted bacteria, we will report on ecological roles of bacterial communities inhabiting the Terra Nova Bay, alongside a focus on biotechnological aspects of their cultivable fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asencio, G., P. Lavin, K. Alegría, M. Domínguez, H. Bello, G. González-Rocha & M. González-Aravena, 2014. Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology 17: 1–5.

    Article  CAS  Google Scholar 

  • Atlas, R. M., 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiological Reviews 45: 180–209.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ayub, N. D., P. M. Tribelli & N. Lopez, 2009. Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13: 59–66.

    Article  CAS  PubMed  Google Scholar 

  • Baldi, F., D. Marchetto, F. Pini, R. Fani, L. Michaud, A. Lo Giudice, D. Berto & M. Giani, 2010. Biochemical and microbial features of shallow marine sediments along the Terra Nova Bay (Ross Sea, Antarctica). Continental Shelf Research 30: 1614–1625.

    Article  Google Scholar 

  • Bargagli, R., 2008. Environmental contamination in Antarctic ecosystems. Science of The Total Environment 400: 212–226.

    Article  CAS  PubMed  Google Scholar 

  • Bargagli, R., L. Nelli, S. Ancora & S. Focardi, 1996. Elevated cadmium accumulation in marine organisms from Terra Nova Bay (Antarctica). Polar Biology 16: 13–520.

    Article  Google Scholar 

  • Bargagli, R., F. Monaci, J. C. Sanchez-Hernandez & D. Cateni, 1998. Biomagnification of mercury in an Antarctic marine coastal food web. Marine Ecology Progress Series 169: 65–76.

    Article  CAS  Google Scholar 

  • Bazzini, S., C. Udine, A. Sass, M. R. Pasca, F. Longo, G. Emiliani, M. Fondi, E. Perrin, F. Decorosi, C. Viti, L. Giovannetti, L. Leoni, R. Fani, G. Riccardi, E. Mahenthiralingam & S. Buroni, 2011. Deciphering the role of RND efflux transporters in Burkholderia cenocepacia. PLoS One 6: 1–15.

    Google Scholar 

  • Bhattarai, H. D., Y. K. Lee, K. H. Cho, H. K. Lee & H. W. Shin, 2006. The study of antagonistic interactions among pelagic bacteria: a promising way to coin environmental friendly antifouling compounds. Hydrobiologia 568: 417–423.

    Article  CAS  Google Scholar 

  • Bonner, W. N., 1984. Conservation and the Antarctic. In Law, R. M. (ed.), Antarctic Ecology. Academic Press, London: 821–850.

    Google Scholar 

  • Borghini, F., J. O. Grimalt, J. C. Sanchez-Hernande & R. Bargagli, 2005. Organochlorine pollutants in soils and mosses from Victoria Land (Antarctica). Chemosphere 58: 271–278.

    Article  CAS  PubMed  Google Scholar 

  • Borja, J., D. M. Taleon, J. Auresenia & S. Gallardo, 2005. Polychlorinated biphenyls and their biodegradation. Process Biochemistry 40: 1999–2013.

    Article  CAS  Google Scholar 

  • Bosi, E., M. Fondi, I. Maida, E. Perrin, D. de Pascale, M.L. Tutino, E. Parrilli, A. Lo Giudice, A. Filloux & R. Fani, 2015. Genome-scale phylogenetic and DNA composition analyses of Antarctic Pseudoalteromonas bacteria reveal inconsistencies in current taxonomic affiliation. Hydrobiologia. doi: 10.1007/s10750-015-2396-9.

  • Brown, M. G. & D. L. Balkwill, 2009. Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface. Microbial Ecology 57: 484–493.

    Article  CAS  PubMed  Google Scholar 

  • Capon, R. J., K. Elsbury, Butler, C. C. Lu, J. N. A. Hooper, J. A. P. Rostas, K. J. O’Brien, L. M. Mudge & A. T. R. Sim, 1993. Extraordinary levels of cadmium and zinc in a marine sponge, Tedania charcoti Topsent: inorganic chemical defense agents. Experientia 49: 263–264.

    Article  CAS  Google Scholar 

  • Cavicchioli, R., K. S. Siddiqui, D. Andrews & K. R. Sowers, 2002. Low-temperature extremophiles and their applications. Current Opinion in Biotechnology 13: 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Ceccarini, A. & S. Giannarelli, 2006. Polychlorobiphenyls. In Nollet, L. M. L. (ed.), Chromatographic analysis of the environment. CRC Press, Boca Raton: 667–710.

    Google Scholar 

  • Celussi, M., A. Paoli, E. Crevatin, A. Bergamasco, F. Margiotta, V. Saggiomo, S. Fonda Umani & P. Del Negro, 2009. Short-term under-ice variability of prokaryotic plankton communities in coastal Antarctic waters (Cape Hallett, Ross Sea). Estuarine and Coastal Shelf Science 81: 491–500.

    Article  Google Scholar 

  • Cincinelli, A., T. Martellini, L. Bittoni, A. Russo, A. Gambaro & L. Lepri, 2008. Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). Journal of Marine Systems 73: 208–220.

    Article  Google Scholar 

  • Corsaro, M. M., R. Lanzetta, E. Parrilli, M. Parrilli & M. L. Tutino, 2001. Structural investigation on the lipooligosaccharide fraction of psychrophilic Pseudoalteromonas haloplanktis TAC 125 bacterium. European Journal of Biochemistry 268: 5092–5097.

    Article  CAS  PubMed  Google Scholar 

  • Corsaro, M. M., R. Lanzetta, E. Parrilli, M. Parrilli, M. L. Tutino & S. Ammarino, 2004. Influence of growth temperature on lipid and phosphate contents of surface polysaccharides from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125. Journal of Bacteriology 186: 29–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corsolini, S., K. Kannan, T. Imagawa, S. Focardi & J. P. Giesy, 2002a. Polychloronaphtalenes and other dioxin-like compounds in Arctic and Antarctic marine food webs. Environmental Science and Technology 36: 3490–3496.

    Article  CAS  PubMed  Google Scholar 

  • Corsolini, S., T. Romeo, N. Ademollo, S. Greco & S. Focardi, 2002b. POPs in key species of marine Antarctic ecosystem. Microchemical Journal 73: 187–193.

    Article  CAS  Google Scholar 

  • Corsolini, S., N. Ademollo, T. Romeo, S. Olmastroni & S. Focardi, 2003. Persistent organic pollutants in some species of a Ross Sea pelagic trophic web. Antarctic Science 15: 95–104.

    Article  Google Scholar 

  • Corsolini, S., A. Covaci, N. Ademollo, S. Focardi & P. Schepens, 2006. Occurrence of organochlorine pesticides (OCPs) and their enantiomeric signatures, and concentrations of polybrominated diphenyl ethers (PBDEs) in the Adélie penguin food web, Antarctica. Environmental Pollution 140: 371–382.

    Article  CAS  PubMed  Google Scholar 

  • Corsolini, S., N. Borghesi, N. Ademollo & S. Focardi, 2011. Chlorinated biphenyls and pesticides in migrating and resident seabirds from East and West Antarctica. Environmental International 37: 1329–1335.

    Article  CAS  Google Scholar 

  • Court, G. S., L. S. Davis, S. Focardi, R. Bargargli, C. Fossi, C. Leonzio & L. Marili, 1997. Chlorinated hydrocarbons in the tissues of South Polar skuas (Catharacta maccormicki) and Adélie penguins (Pygoscelis adeliea) from Ross Sea, Antarctica. Environmental Pollution 97: 295–301.

    Article  CAS  PubMed  Google Scholar 

  • Crockett, A. B. & G. J. White, 2003. Mapping sediment contamination and toxicity in Winter Quarter Bay, McMurdo Station, Antarctica. Environmental Monitoring and Assessment 85: 257–275.

    Article  CAS  PubMed  Google Scholar 

  • Dalla Riva, S., M. L. Abelmoschi, E. Magi & F. Soggia, 2004. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea – Northern Victoria Land). Chemosphere 56: 59–69.

    Article  CAS  PubMed  Google Scholar 

  • D’Amico, S., T. Collins, J. C. Marx, G. Feller & C. Gerday, 2006. Psychrophilic microorganisms: challenges for life. EMBO Reports 7: 385–389.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Davidson, B. S., 1995. New dimensions in natural products research: cultured marine microorganisms. Current Opinions in Biotechnology 6: 284–291.

    Article  CAS  Google Scholar 

  • Dayton, P. K., G. A. Robilliard & R. T. Paine, 1970. Benthic Faunal Zonation as a Result of Anchor Ice at McMurdo Sound, Antarctica. In Holdgate, M. W. (ed.), Antarctic Ecology. Academic Press, London and New York: 244–258.

    Google Scholar 

  • De Domenico, M., A. Lo Giudice, L. Michaud, M. Saitta & V. Bruni, 2004. Diesel oil and PCB-degrading bacteria isolated from Antarctic seawater (Terra Nova Bay, Ross Sea). Polar Research 23: 141–146.

    Article  Google Scholar 

  • Delille, D. & B. Delille, 2000. Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic interdital sediments. Marine Environmental Research 49: 403–417.

    Article  CAS  PubMed  Google Scholar 

  • Delille, D. & E. Perret, 1989. Influence of temperature on the growth potential of southern polar marine bacteria. Microbial Ecology 18: 117–123.

    Article  CAS  PubMed  Google Scholar 

  • de Moreno, J. E. A., M. S. Gerpe, V. J. Moreno & C. Vodopivez, 1997. Heavy metals in Antarctic organisms. Polar Biology 17: 131–140.

    Article  Google Scholar 

  • Desai, J. D. & I. M. Banat, 1997. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Review 61: 47–64.

    CAS  Google Scholar 

  • De Souza, M.-J., S. Nair, P. A. Loka Bharathi & D. Chandramohan, 2006. Metal and antibiotic-resistance in psychrotrophic bacterial from Antarctic marine waters. Ecotoxicology 15: 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Feller, G. & C. Gerday, 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nature Reviews in Microbiology 1: 200–208.

    Article  CAS  PubMed  Google Scholar 

  • Fendrihan, S. & T. G. Negoiţa, 2012. Psychrophilic Microorganisms as Important Source for Biotechnological Processes. In Stan-Lotter, H. & S. Fendrihan (eds), Adaption of Microbial Life to Environmental Extremes. Springer, Vienna: 133–172.

    Chapter  Google Scholar 

  • Fischbach, M. A. & C. T. Walsh, 2009. Antibiotics for emerging pathogens. Science 325: 1089–1093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Focardi, S., R. Bargagli & S. Corsolini, 1995. Isomer-specific analysis and toxic potential evaluation of polychlorinated biphenyls in Antarctic fish, seabirds and Weddell seals from Terra Nova Bay (Ross Sea). Antarctic Science 7: 31–35.

    Article  Google Scholar 

  • Fondi, M. & R. Fani, 2010. The horizontal flow of the plasmid resistome: clues from inter-generic similarity networks. Environmental Microbiology 12: 3228–3242.

    Article  CAS  PubMed  Google Scholar 

  • Fondi, M., V. Orlandini, I. Maida, E. Perrin, M. C. Papaleo, G. Emiliani, D. de Pascale, E. Parrilli, M. L. Tutino, L. Michaud, A. Lo Giudice & R. Fani, 2012. The draft genome of the VOCs-producing Antarctic bacterium Arthrobacter sp. TB23 able to inhibit Cystic Fibrosis pathogens belonging to the Burkholderia cepacia complex. Journal of Bacteriology 194: 6334–6335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fondi, M., V. Orlandini, E. Perrin, I. Maida, E. Bosi, M. C. Papaleo, L. Michaud, A. Lo Giudice, D. de Pascale, M. L. Tutino, P. Liò & R. Fani, 2014. Draft genomes of three Antarctic Psychrobacter strains known to have antimicrobial activity against Burkholderia cepacia complex opportunistic pathogens. Marine Genomics 13: 37–38.

    Article  PubMed  Google Scholar 

  • Fox, J. L., 2006. The business of developing antibacterials. Nature Biotechnology 24: 1521–1528.

    Article  CAS  PubMed  Google Scholar 

  • Fuoco, R. & A. Ceccarini, 2001. Polychlorobiphenyls in Antarctic Matrices. In Caroli, S., P. Cescon & D. W. H. Walton (eds), Environmental contamination in Antarctica: a challenge for analytical chemistry. Elsevier Science, Oxford: 237–274.

    Chapter  Google Scholar 

  • Fuoco, R., M. P. Colombini, A. Ceccarini & C. Abete, 1996. Polychlorobiphenyls in Antarctica. Microchemical Journal 54: 384–390.

    Article  PubMed  Google Scholar 

  • Fuoco, R., S. Giannarelli, C. Abete, M. Onor & M. Termine, 1999. The effect of seasonal pack ice melting on the sea water polychlorobiphenyl contents at Gerlache Inlet and Wood Bay (Ross Sea – Antarctica). International Journal of Environmental Analytical Chemistry 75: 367–375.

    Article  CAS  Google Scholar 

  • Fuoco, R., S. Giannarelli, Y. Wei, C. Abete, S. Francescon & M. Termine, 2005. Polychlorobiphenyls and polycyclic aromatic hydrocarbons in the sea-surface microlayer and the water column at Gerlache Inlet, Antarctica. Journal of Environmental Monitoring 7: 1313–1319.

    Article  CAS  PubMed  Google Scholar 

  • Gambaro, A., L. Manodori, R. Zangrando, A. Cincinelli, G. Capodaglio & P. Cescon, 2005. Atmospheric PCB concentrations at Terra Nova Bay, Antarctica. Environmental Science and Technology 39: 9406–9411.

    Article  CAS  PubMed  Google Scholar 

  • Gentile, G., V. Bonasera, C. Amico, L. Giuliano & M. M. Yakimov, 2003. Shewanella sp. GA-22, a psychrophilic hydrocarbonoclastic Antarctic bacterium producing polyunsaturated fatty acids. Journal of Applied Microbiology 95: 1124–1133.

    Article  CAS  PubMed  Google Scholar 

  • Gentile, G., L. Giuliano, G. D’Auria, F. Smedile, M. Azzaro, M. De Domenico & M. M. Yakimov, 2006. Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environmental Microbiology 8: 2150–2161.

    Article  CAS  PubMed  Google Scholar 

  • Gillan, D. C., B. Danis, P. Pernet, G. Joly & P. Dubois, 2005. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Applied and Environmental Microbiology 71: 679–690.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giordano, R., G. Lombardi, L. Ciaralli, E. Beccaloni, A. Sepe, M. Ciprotti & S. Costantini, 1999. Major and trace elements in sediments from Terra Nova Bay, Antarctica. Science of the Total Environment 227: 29–40.

    Article  CAS  Google Scholar 

  • Grotti, M., F. Soggia, C. Lagomarsino, S. Dalla Riva, W. Goessler & K. A. Francesconi, 2008. Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarctic Science 20: 39–51.

    Article  Google Scholar 

  • Grossart, H. P., A. Schlingloff, M. Bernhard, M. Simon & T. Brinkhoff, 2004. Antagonistic activity of bacteria isolated from organic aggregates of the German Wadden Sea. FEMS Microbiology Ecology 47: 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Grzymski, J. J., B. J. Carter, E. F. DeLong & R. A. Feldman, 2006. Comparative genomics of DNA fragments from six Antarctic marine planktonic bacteria. Applied and Environmental Microbiology 72: 1532–1541.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helmke, E. & H. Weyland, 2004. Psychrophilic versus psychrotolerant bacteria – occurrence and significance in polar and temperate marine habitats. Cellular and Molecular Biology 50: 553–561.

    CAS  PubMed  Google Scholar 

  • Hentschel, U., M. Schmid, M. Wagner, L. Fieseler, C. Gernert & J. Hacker, 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology 35: 305–312.

    Article  CAS  PubMed  Google Scholar 

  • Ianni, C., E. Magi, F. Soggia, P. Rivaro & R. Frache, 2010. Trace metal speciation in coastal and off-shore sediments from Ross Sea (Antarctica). Microchemical Journal 96: 203–212.

    Article  CAS  Google Scholar 

  • Jayatilake, G. S., M. P. Thornton, A. C. Leonard, J. E. Grimwade & B. J. Baker, 1996. Metabolites from an Antarctic sponge-associated bacterium, Pseudomonas aeruginosa. Journal of Natural Products 59: 293–296.

    Article  CAS  PubMed  Google Scholar 

  • Jensen, P. R. & W. Fenical, 2000. Marine Microorganisms and Drug Discovery: Current Status and Future Potential. In Fusetani, N. (ed.), Drugs From the Sea. Karger Publishers, Basel: 6–29.

    Chapter  Google Scholar 

  • Kahle, J. & G.-P. Zauke, 2003. Trace metals in Antarctic copepods from the Weddell Sea (Antarctica). Chemosphere 51: 409–417.

    Article  CAS  PubMed  Google Scholar 

  • Kennicutt, M. C., S. J. McDonald, J. L. Sericano, P. Boothe, J. Oliver, S. Safe, B. J. Presley, H. Liu, D. Wolfe, T. L. Wade, A. Crockett & D. Bockus, 1995. Human contamination of the marine environment: Arthur Harbor and McMurdo Sound, Antarctica. Environmental Science and Technology 29: 1279–1287.

    Article  CAS  Google Scholar 

  • Kennicutt, M. C., A. Klein, P. Montagna, S. Sweet, T. Wade, T. Palmer, J. Sericano & G. Denoux, 2010. Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica. Environmental Research Letters 5: 034010.

    Article  CAS  Google Scholar 

  • Krembs, C. & J. W. Deming, 2008. The Role of Exopolymers in Microbial Adaptation to Sea Ice. In Margesin, R., F. Schinner, J. C. Marx & C. Gerday (eds), Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin: 247–286.

    Chapter  Google Scholar 

  • Kube, M., T. N. Chernikova, Y. Al-Ramahi, A. Beloqui, N. Lopez-Cortez, M. E. Guazzaroni, H. J. Heipieper, S. Klages, O. R. Kotsyurbenko, I. Langer, T. Y. Nechitaylo, H. Lünsdorf, M. Fernández, S. Juárez, S. Ciordia, A. Singer, O. Kagan, O. Egorova, P. A. Petit, P. Stogios, Y. Kim, A. Tchigvintsev, R. Flick, R. Denaro, M. Genovese, J. P. Albar, O. N. Reva, M. Martínez-Gomariz, H. Tran, M. Ferrer, A. Savchenko, A. F. Yakunin, M. M. Yakimov, O. V. Golyshina, R. Reinhardt & P. N. Golyshin, 2013. Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica. Nature Communications 4: 2156.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Larsson, P., C. Järnmark & A. Södergren, 1992. PCBs and chlorinated pesticides in the atmosphere and aquatic organisms of Ross Island, Antarctica. Marine Pollution Bulletin 25: 281–287.

    Article  CAS  Google Scholar 

  • Lemos, M. L., A. E. Toranzo & J. B. Barja, 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbial Ecology 11: 149–163.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., B. Sun, S. Liu, L. Jiang, X. Liu, H. Zhang & Y. Che, 2008. Bioactive asterric acid derivatives from the Antarctic ascomycete fungus Geomyces sp. Journal of Natural Products 71: 1643–1646.

    Article  CAS  PubMed  Google Scholar 

  • Lo Giudice, A., M. Brilli, V. Bruni, M. De Domenico, R. Fani & L. Michaud, 2007a. Bacterium-bacterium inhibitory interactions among psychrotrophic bacteria isolated from Antarctic seawaters (Terra Nova Bay, Ross Sea). FEMS Microbiology Ecology 60: 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Lo Giudice, A., V. Bruni & L. Michaud, 2007b. Characterization of Antarctic psychrotrophic bacteria with antibacterial activities against terrestrial microorganisms. Journal of Basic Microbiology 47: 496–505.

    Article  CAS  PubMed  Google Scholar 

  • Lo Giudice, A., V. Bruni & L. Michaud, 2010a. Potential for Microbial Biodegradation of Polychlorinated Biphenyls in Polar Environments. In Bej, A. K., J. Aislabie & R. M. Atlas (eds), Polar Microbiology: The Ecology, Diversity and Bioremediation Potential of Microorganisms in Extremely Cold Environments. CRC Press, Taylor and Francis Group: 255–275.

    Google Scholar 

  • Lo Giudice, A., V. Bruni, M. De Domenico & L. Michaud, 2010b. Psychrophiles-Cold-Adapted Hydrocarbon-Degrading Microorganisms. In Timmis, K. N. (ed.), Handbook of Hydrocarbon and Lipid Microbiology, Vol. 3. Springer, Heidelberg: 1897–1922.

    Chapter  Google Scholar 

  • Lo Giudice, A., P. Casella, C. Caruso, S. Mangano, V. Bruni, M. De Domenico & L. Michaud, 2010c. Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biology 33: 929–943.

    Article  Google Scholar 

  • Lo Giudice, A., C. Caruso, S. Mangano, V. Bruni, M. De Domenico & L. Michaud, 2012. Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microbial Ecology 63: 210–223.

    Article  PubMed  Google Scholar 

  • Lo Giudice, A., P. Casella, V. Bruni & L. Michaud, 2013. Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology 22: 240–250.

    Article  CAS  PubMed  Google Scholar 

  • Long, R. A. & F. Azam, 2001. Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Microbiology 67: 4975–4983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maida, I., M. Fondi, M. C. Papaleo, E. Perrin, V. Orlandini, G. Emiliani, D. de Pascale, E. Parrilli, M. L. Tutino, L. Michaud, A. Lo Giudice, R. Romoli, G. Bartolucci & R. Fani, 2014. Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles 18: 35–49.

    Article  CAS  PubMed  Google Scholar 

  • Maida, I., E. Bosi, M. Fondi, E. Perrin, V. Orlandini, M.C. Papaleo, A. Mengoni, D. de Pascale, M. L. Tutino, L. Michaud, A. Lo Giudice & R. Fani, 2015. Antimicrobial activity of Pseudoalteromonas strains isolated from Ross Sea (Antarctica) vs cystic fibrosis opportunistic pathogens. Hydrobiologia. doi: 10.1007/s10750-015-2190-8.

  • Mangano, S., L. Michaud, C. Caruso, M. Brilli, V. Bruni, R. Fani & A. Lo Giudice, 2009. Antagonistic interactions among psychrotrophic cultivable bacteria isolated from Antarctic sponges: a preliminary analysis. Research in Microbiology 160: 27–37.

    Article  CAS  PubMed  Google Scholar 

  • Mangano, S., L. Michaud, C. Caruso & A. Lo Giudice, 2014. Metal and antibiotic-resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biology 37: 227–235.

    Article  Google Scholar 

  • Margesin, R., 2007. Alpine microorganism: useful tools for low-temperature bioremediation. Journal of Microbiology 45: 281–285.

    CAS  Google Scholar 

  • Margesin, R. & F. Schinner, 1994. Properties of cold-adapted microorganisms and their potential role in biotechnology. Journal of Biotechnology 33: 1–14.

    Article  CAS  Google Scholar 

  • Margesin, R. & F. Schinner, 1999. Biological decontamination of oil spills in cold environments. Journal of Chemical Technology and Biotechnology 74: 381–389.

    Article  CAS  Google Scholar 

  • Martinez, J. L., 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution 157: 2893–2902.

    Article  CAS  PubMed  Google Scholar 

  • Maugeri, T. L., C. Gugliandolo & V. Bruni, 1996. Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). New Microbiologica 19: 67–76.

    CAS  PubMed  Google Scholar 

  • Mengoni, A., I. Maida, C. Chiellini, G. Emiliani, S. Mocali, A. Fabiani, M. Fondi, F. Firenzuoli & R. Fani, 2014. Antibiotic resistance differentiates Echinacea purpurea endophytic bacterial communities with respect to plant organs. Research in Microbiology 165: 686–694.

    Article  CAS  PubMed  Google Scholar 

  • Michaud, L., A. Lo Giudice, M. Saitta, M. De Domenico & V. Bruni, 2004. The biodegradation efficiency on diesel oil by two psychrotrophic Antarctic marine bacteria during a two-month-long experiment. Marine Pollution Bulletin 49: 405–409.

    Article  CAS  PubMed  Google Scholar 

  • Michaud, L., G. Di Marco, V. Bruni & A. Lo Giudice, 2007. Biodegradative potential and characterization of psychrotolerant polychlorinated biphenyl-degrading marine bacteria isolated from a coastal station in the Terra Nova Bay (Ross Sea, Antarctica). Marine Pollution Bulletin 54: 1754–1761.

    Article  CAS  PubMed  Google Scholar 

  • Miller, R. V., K. Gammon & M. J. Day, 2009. Antibiotic resistance among bacteria isolated from seawater and penguin fecal samples collected near Palmer Station, Antarctica. Canadian Journal of Microbiology 55: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Montone, R. C., S. Taniguchi, C. Boian & R. R. Weber, 2005. PCBs and chlorinated pesticides (DDTs, HCHs and HCB) in the atmosphere of the southwest Atlantic and Antarctic oceans. Marine Pollution Bulletin 50: 778–786.

    Article  CAS  PubMed  Google Scholar 

  • Mojib, N., R. Philpott, J. P. Huang, M. Niederweis & A. K. Bej, 2010. Antimycobacterial activity in vitro of pigments isolated from Antarctic bacteria. Antonie van Leeuwenhoek 98: 531–540.

    Article  CAS  PubMed  Google Scholar 

  • Morita, R. Y., 1975. Psychrophilic bacteria. Bacteriological Reviews 39: 144–167.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nair, S. & U. Simidu, 1987. Distribution and significance of heterotrophic marine bacteria with antibacterial activity. Applied and Environmental Microbiology 53: 2957–2962.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Negoita, T. G., A. Covaci, A. Gheorghe & P. Schepens, 2003. Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast. Journal of Environmental Pollution 5: 281–286.

    CAS  Google Scholar 

  • Negri, A., K. Burns, S. Boyle, D. Brinkman & N. Webster, 2006. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution 143: 456–467.

    Article  CAS  PubMed  Google Scholar 

  • Newman, D. J. & G. M. Cragg, 2007. Natural products as sources of new drugs over the last 25 years. Journal of Natural Products 70: 461–477.

    Article  CAS  PubMed  Google Scholar 

  • Nichols, D., J. Bowman, K. Sanderson, C. Mancuso Nichols, T. Lewis, T. McMeekin & P. D. Nichols, 1999. Development with Antarctic microorganisms: culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Current Opinions in Biotechnology 10: 240–246.

    Article  CAS  Google Scholar 

  • O’Brien, A., R. Sharp, N. Russell & S. Roller, 2004. Antarctic bacteria inhibit growth of food-borne microorganisms at low temperatures. FEMS Microbiology Ecology 48: 157–167.

    Article  PubMed  CAS  Google Scholar 

  • Orlandini, V., I. Maida, M. Fondi, E. Perrin, M. C. Papaleo, E. Bosi, D. de Pascale, M. L. Tutino, L. Michaud, A. Lo Giudice & R. Fani, 2014. Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds. Microbiological Research 169: 593–601.

    Article  CAS  PubMed  Google Scholar 

  • Papaleo, M. C., M. Fondi, I. Maida, E. Perrin, A. Lo Giudice, L. Michaud, S. Mangano, G. Bartolucci, R. Romoli & R. Fani, 2012. Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances 30: 272–293.

    Article  CAS  PubMed  Google Scholar 

  • Papaleo, M. C., R. Romoli, G. Bartolucci, I. Maida, E. Perrin, M. Fondi, V. Orlandini, A. Mengoni, G. Emiliani, M. L. Tutino, E. Parrilli, D. de Pascale, L. Michaud, A. Lo Giudice & R. Fani, 2013. Bioactive volatile organic compounds from Antarctic (sponges) bacteria. New Biotechnology 30: 824–838.

    Article  CAS  PubMed  Google Scholar 

  • Pathom-Aree, W., J. E. Stach, A. C. Ward, K. Horikoshi, A. T. Bull & M. Goodfellow, 2006. Diversity of actinomycetes isolated from Challenger Deep sediment (10,898 m) from the Mariana Trench. Extremophiles 10: 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Paudel, B., H. D. Bhattarai, J. S. Lee, S. G. Hong, H. W. Shin & J. H. Yim, 2008. Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytotherapy Research 22: 1269–1271.

    Article  CAS  PubMed  Google Scholar 

  • Pearce, D. A., 2012. Extremophiles in Antarctica: Life at Low Temperatures. In Stan-Lotter, H. & S. Fendrihan (eds.), Adaption of Microbial Life to Environmental Extremes. Springer-Verlag, Vienna: 87–118.

    Chapter  Google Scholar 

  • Pepi, M., A. Cesàro, G. Liut & F. Baldi, 2005. An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiology Ecology 53: 157–166.

    Article  CAS  PubMed  Google Scholar 

  • Perrin, E., M. Fondi, M. C. Papaleo, I. Maida, S. Buroni, M. R. Pasca, G. Riccardi & R. Fani, 2010. Exploring the HME and HAE1 efflux systems in the genus Burkholderia. BMC Evolutionary Biology 10: 164–182.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perrin, E., M. Fondi, M. C. Papaleo, I. Maida, G. Emiliani, S. Buroni, M. R. Pasca, G. Riccardi & R. Fani, 2013. A census of RND-superfamily proteins in the Burkholderia genus. Future Microbiology 8: 923–937.

    Article  CAS  PubMed  Google Scholar 

  • Phadtare, S. & M. Inouye, 2008. Cold Shock Proteins. In Margesin, R., F. Schinner, J. C. Marx & G. Gerday (eds.), Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin: 191–210.

    Chapter  Google Scholar 

  • Pini, F., C. Grossi, S. Nereo, L. Michaud, A. Lo Giudice, V. Bruni, F. Baldi & R. Fani, 2007. Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). European Journal of Soil Biology 43: 368–379.

    Article  CAS  Google Scholar 

  • Powell, S. M., I. Snape, J. P. Bowman, B. A. W. Thompson, J. S. Stark, S. A. McCammon & M. J. Riddle, 2005. A comparison of the short term effects of diesel fuel and lubricant oils on Antarctic benthic microbial community. Journal of Experimental Marine Biology and Ecology 322: 53–65.

    Article  CAS  Google Scholar 

  • Risebrough, R. W., B. W. de Lappe & C. Younghans-Haug, 1990. PCB and PCT contamination in Winter Quarters Bay, Antarctica. Marine Pollution Bulletin 21: 523–529.

    Article  CAS  Google Scholar 

  • Rittmann, B. E., M. Hausner, F. Löffler, N. G. Love, G. Muyzer, S. Okabe, D. B. Oerther, J. Peccia, L. Raskin & M. Wagner, 2006. A vista for microbial ecology and environmental biotechnology. Environmental Science and Technology 40: 1026–1103.

    Article  Google Scholar 

  • Romoli, R., M. C. Papaleo, D. de Pascale, M. L. Tutino, L. Michaud, A. Lo Giudice, R. Fani & G. Bartolucci, 2011. Characterization of the volatile profile of Antarctic bacteria by using solid-phase microextraction – gas chromatography mass spectrometry. Journal of Mass Spectroscopy 46: 1051–1059.

    Article  CAS  Google Scholar 

  • Romoli, R., M. C. Papaleo, D. de Pascale, M. L. Tutino, L. Michaud, A. Lo Giudice, R. Fani & G. Bartolucci, 2014. GC-MS volatolomic approach to study the antimicrobial activity of the Antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics 10: 42–51.

    Article  CAS  Google Scholar 

  • Ron, E. Z. & E. Rosenberg, 2001. Natural roles of biosurfactants. Environmental Microbiology 3: 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Ross, G., 2004. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicology and Environmental Safety 59: 275–291.

    Article  CAS  PubMed  Google Scholar 

  • Runcie, J. W. & M. J. Riddle, 2004. Metal concentrations in macroalgae from East Antarctica. Marine Pollution Bulletin 49: 1109–1126.

    Article  CAS  Google Scholar 

  • Russell, N. J., 2008. Membrane Components and Cold Sensing. In Margesin, R., F. Schinner, J. C. Marx & C. Gerday (eds.), Psychrophiles: From Biodiversity to Biotechnology. Springer, Berlin: 177–190.

    Chapter  Google Scholar 

  • Safe, S., 2004. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environmental Health Perspectives 100: 259–268.

    Article  Google Scholar 

  • Santos, I. R., E. V. Silva-Filho, C. E. G. R. Schaefer, M. R. Albuquerque-Filho & L. S. Campos, 2005. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin 50: 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Schweizer, H. P., 2003. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genetics and Molecular Research 2: 48–62.

    PubMed  Google Scholar 

  • Selvin, J., S. S. Priya, G. S. Kiran, T. Thangavelu & N. S. Bai, 2009. Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiological Research 164: 352–363.

    Article  CAS  PubMed  Google Scholar 

  • Taton, A., S. Grubisic, D. Ertz, D. A. Hodgson, R. Piccardi, N. Biondi, M. R. Tredici, M. Mainini, D. Losi, F. Marinelli & A. Wilmotte, 2006. Polyphasic study of Antarctic cyanobacterial strains. Journal of Phycology 42: 1257–1270.

    Article  CAS  Google Scholar 

  • Thomas, D. N. & G. S. Dieckmann, 2002. Antarctic Sea ice – a habitat for extremophiles. Science 295: 641–644.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, V., G. McDonnell, S. P. Denyer & J. Y. Maillard, 2010. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiology Review 34: 231–259.

    Article  CAS  Google Scholar 

  • Truzzi, C., A. Annibaldi, S. Illuminati, E. Bassotti & G. Scarponi, 2008. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica). Analytical and Bioanalytical Chemistry 392: 247–262.

    Article  CAS  PubMed  Google Scholar 

  • Vidal-Aroca, F., A. Meng, T. Minz, M. G. P. Page & J. Dreier, 2009. Use of resazurin to detect mefloquine as an efflux-pump inhibitor in Pseudomonas aeruginosa and Escherichia coli. Journal of Microbiological Methods 79: 232–237.

    Article  CAS  PubMed  Google Scholar 

  • Vincent, W. F., 2000. Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarctic Science 12: 374–385.

    Article  Google Scholar 

  • Watanabe, K., H. Futamata & S. Harayama, 2002. Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie van Leeuwenhoek 81: 655–663.

    Article  CAS  PubMed  Google Scholar 

  • Webster, N. S., A. P. Negri, M. M. H. G. Munro & C. N. Battershill, 2004. Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology 6: 288–300.

    Article  PubMed  Google Scholar 

  • Wynn-Williams, D. D., 1996. Antarctic microbial diversity: the basis of polar ecosystem processes. Biodiversity and Conservation 5: 1271–1293.

    Article  Google Scholar 

  • Yakimov, M. M., L. Giuliano, V. Bruni, S. Scarfì & P. N. Golyshin, 1999. Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiologica 22: 249–259.

    CAS  PubMed  Google Scholar 

  • Yakimov, M. M., L. Giuliano, G. Gentile, E. Crisafi, T. N. Chernikova, W. R. Abraham, H. Lünsdorf, K. N. Timmis & P. N. Golyshin, 2003. Oleispira antarctica gen. nov., sp. nov., a new hydrocarbonoclastic marine bacterium, isolated from an Antarctic coastal seawater. International Journal of Systematics and Evolutionary Microbiology 53: 779–785.

    Article  CAS  Google Scholar 

  • Yakimov, M. M., G. Gentile, V. Bruni, S. Cappello, G. D’Auria, P. N. Golyshin & L. Giuliano, 2004. Crude oil-induced structural shift of coastal bacterial communities of Rod Bay (Terra Nova Bay, Ross Sea) and characterization of cultured cold-adapted hydrocarbonoclastic bacteria. FEMS Microbiology Ecology 49: 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., R. An, J. Wang, N. Sun, S. Zhang, J. Hu & J. Kuai, 2005. Exploring novel bioactive compounds from marine microbes. Current Opinions in Microbiology 8: 276–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Italian Cystic Fibrosis Research foundation (Grant FFC#12/2011), the Ente Cassa di Risparmio di Firenze (Grant 1103#2008), the MNA (Museo Nazionale dell’Antartide), and PNRA (Programma Nazionale di Ricerche in Antartide) Grant (PNRA 2013 AZ1.04). We also acknowledge the EU KBBE Project Pharmasea 2012–2016, Grant Agreement no: 312184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Lo Giudice.

Additional information

This review is a tribute to Luigi Michaud, enthusiastic researcher, who died in Antarctica (Terra Nova Bay, Ross Sea) during sampling activities underwater. He strongly contributed to gain advances in our knowledge on the Antarctic microbial ecology. Most results here reported are the fruit of his dedication and passion.

Guest editors: Diego Fontaneto & Stefano Schiaparelli / Biology of the Ross Sea and Surrounding Areas in Antarctica

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo Giudice, A., Fani, R. Cold-adapted bacteria from a coastal area of the Ross Sea (Terra Nova Bay, Antarctica): linking microbial ecology to biotechnology. Hydrobiologia 761, 417–441 (2015). https://doi.org/10.1007/s10750-015-2497-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2497-5

Keywords

Navigation