Skip to main content
Log in

Silica-scaled chrysophytes (Stramenopiles, Ochrophyta) along a salinity gradient: a case study from the Gulf of Bothnia western shore (northern Europe)

  • PHYTOPLANKTON & SPATIAL GRADIENTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Silica-scaled chrysophytes (Stramenopiles, Ochrophyta) are represented predominantly by freshwater flagellates. Diverse-scaled chrysophyte communities were previously reported from brackish waters of the Baltic Sea. However, it was clear that part of the community was delivered by freshwater river inputs. To investigate the effect of salinity on species diversity and community structure, we sampled the lakes in the close proximity to the shoreline (up to 5 km) and in almost separated deep bays (salinity values of 0.01–3.08 practical salinity units) of the Gulf of Bothnia, Baltic Sea. We excluded exposed seashore sites to minimalize river flow impact. Species determination was based on scale morphology, which was investigated with a transmission electron microscope. Salinity was the important predictor of diversity; the Simpson index significantly declined with increasing salinity. Community structure of silica-scaled chrysophytes was influenced most strongly by pH. The effect of salinity was also important; however, the net effect of salinity was overridden by pH which was highly correlated to salinity. The occurrence of twelve recorded silica-scaled chrysophytes (out of 83 taxa) was significantly negatively correlated to salinity. Conversely, six species incl. Mallomonas tonsurata and M. alpina favored more saline habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdi, H., 2007. Kendall rank correlation. In Salkind, N. J. (ed.), Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CA.

    Google Scholar 

  • Asmund, B., G. Cronberg & M. Dürrschmidt, 1982. Revision of the Mallomonas pumilio group (Chrysophyceae). Nordic Journal of Botany 2: 383–395.

    Article  Google Scholar 

  • Cavalier-Smith, T., 2015. Heterokontophyta/Ochrophyta. In Frey, W. (ed.), Syllabus of Plant Families, Volume 2/1: Photoautotrophic Eukaryotic Algae. Borntraeger, Stuttgart.

    Google Scholar 

  • Cronberg, G. & J. Kristiansen, 1980. Synuraceae and other Chrysophyceae from central Smaland. Sweden Botaniska Notiser 133: 595–618.

    Google Scholar 

  • del Campo, J. & R. Massana, 2011. Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162: 435–448.

    Article  PubMed  Google Scholar 

  • Eloranta, P., 1985. Notes on the scaled chrysophytes (Synuraceae, Chrysophyceae) in small lakes in and near Salamajarvi National Park, western Finland. Memoranda Societatis pro Fauna et Flora Fennica 61: 77–83.

    Google Scholar 

  • Eloranta, P., 1989. Scaled chrysophytes (Chrysophyceae and Synurophyceae) from the national park lakes in southern and central Finland. Nordic Journal of Botany 8: 671–681.

    Article  Google Scholar 

  • Evans, K. M., V. A. Chepurnov, H. J. Sluiman, S. J. Thomas, B. M. Spears & D. G. Mann, 2009. Highly differentiated populations of the freshwater diatom Sellaphoracapitata suggest limited dispersal and opportunities for allopatric speciation. Protist 160: 386–396.

    Article  PubMed  Google Scholar 

  • Forsgren, G. & M. Jansson, 1992. The turnover of river-transported iron, phosphorus and organic carbon in the Öre estuary, northern Sweden. Hydrobiologia 235(236): 585–596.

    Article  Google Scholar 

  • Gutowski, A., 1989. Seasonal succession of scaled chrysophytes in a small lake in Berlin. Nova Hedwigia, Beiheft 95: 159–177.

    Google Scholar 

  • Håkansson, B., P. Alenius & L. Brydsten, 1996. Physical environment in the Gulf of Bothnia. Ambio Special Report 8: 5–12.

    Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hällfors, G., 2004. Checklist of Baltic Sea phytoplankton species (including some heterotrophic protistan groups). Baltic Sea Environment Proceedings 95: 1–208.

    Google Scholar 

  • Hällfors, G. & S. Hällfors, 1988. Records of chrysophytes with siliceous scales (Mallomonadaceae and Paraphysomonadaceae) from Finnish inland waters. Hydrobiologia 161: 1–29.

    Article  Google Scholar 

  • Hansen, P. & J. Kristiansen, 1997. Silica-scaled chrysophytes from Aland. Memoranda Societatis pro Fauna et Flora Fennica 73: 45–52.

    Google Scholar 

  • Ikävalko, J., 1994a. Contribution to the flora of silica-scaled flagellares in Mikkeli, central Finand. Nova Hedwigia 58: 475–505.

    Google Scholar 

  • Ikävalko, J., 1994b. Observations on silica-scaled flagellates (Chrysophyceae and Synurophyceae) in the brackish water of Pojo Bay, SW coast of Finland. Annales Botanici Fennici 31: 1–27.

    Google Scholar 

  • Ikävalko, J. & H. A. Thomsen, 1996. Scale-covered and loricate flagellates (Chrysophyceae and Synurophyceae) from Baltic Sea ice. Nova Hedwigia, Beiheft 114: 147–160.

    Google Scholar 

  • Jacobsen, B. A., 1985. Scale-bearing Chrysophyceae (Mallomonadaceae and Paraphysomonadaceae) from West Greenland. Nordic Journal of Botany 5: 381–398.

    Article  Google Scholar 

  • Jo, B. Y., W. Shin, H. S. Kim, P. A. Siver & R. A. Andersen, 2013. Phylogeny of the genus Mallomonas (Synurophyceae) and descriptions of five new species on the basis of morphological evidence. Phycologia 52: 266–278.

    Article  Google Scholar 

  • Kautsky, L. & N. Kautsky, 2000. The Baltic Sea, including Bothnian Sea and Bothnian Bay. In Sheppard, C. (ed.), Seas at the Millennium: An Environmental Evaluation. Elsevier, Amsterdam: 121–133.

    Google Scholar 

  • Kling, H. J. & D. L. Findlay, 2001. Dominant scaled and non-scaled chrysophytes in northwestern Ontario Shield lakes. Nova Hedwigia, Beiheft 122: 75–79.

    Google Scholar 

  • Kristiansen, J. & H. R. Preisig, 2007. Chrysophyte and Haptophyte algae, 2nd part: Synurophyceae. In Büdel, B., G. Gärtner, L. Krienitz, H. R. Preisig & M. Schagerl (eds), Süsswasserflora von Mitteleuropa, Vol. 1/2. Springer, Berlin.

    Google Scholar 

  • Ma, C.-X. & Y.-X. Wei, 2013. A new species of the genus Mallomonas found in the national wetland preserve in Zhenbaodao, Heilongjiang, northeast China. Nova Hedwigia 96: 457–462.

    Article  Google Scholar 

  • Maberly, S. C., L. A. Ball, J. A. Raven & D. Sueltemeyer, 2009. Inorganic carbon acquisition bychrysophytes. Journal of Phycology 45: 1052–1061.

    Article  CAS  Google Scholar 

  • Martiny, J. B. H., B. J. M. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, M. C. Horner-Devine, M. Kane, J. A. Krumins, C. R. Kuske, P. J. Morin, S. Naeem, L. Øvreås, A. L. Reysenbach, V. H. Smith & J. T. Staley, 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.

    Article  CAS  PubMed  Google Scholar 

  • Massana, R., R. Terrado, I. Forn, C. Lovejoy & C. Pedros-Alio, 2006. Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environmental Microbiology 8: 1515–1522.

    Article  CAS  PubMed  Google Scholar 

  • Němcová, Y., J. Neustupa, S. Nováková & T. Kalina, 2002. Silica-scaled chrysophytes of the Sumava National Park and the Trebonsko UNESCO Biosphere Reserve (Southern Bohemia, Czech Republic). Nordic Journal of Botany 22: 375–383.

    Article  Google Scholar 

  • Němcová, Y., J. Kreidlová, A. Kosová & J. Neustupa, 2012. Lakes and pools of Aquitaine region (France): a biodiversity hotspot of Synurales in Europe. Nova Hedwigia 95: 1–24.

    Article  Google Scholar 

  • Němcová, Y. & J. Kreidlová, 2013. Two new species of Mallomonas (Chrysophyceae: synurales): Mallomonas temonis and Mallomonas divida. Phytotaxa 87: 11–18.

    Article  Google Scholar 

  • Němcová, Y., J. Kreidlová, M. Pusztai & J. Neustupa, 2013. Mallomonas pumilio group (Chrysophyceae/Stramenopiles) – a revision based on the scale/scale-case morphology and analysis of scale shape. Nova Hedwigia, Beiheft 142: 27–49.

    Google Scholar 

  • Nicholls, K. H., 1984. Spiniferomonas septispina and S. enigmata, two new algal species confusing the distinction between Spiniferomonas and Chrysosphaerella (Chrysophyceae). Plant Systematics and Evolution 148: 103–117.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2014. Package ‘vegan’ Community Ecology Package. Version 2.0–10. Available on internet at http://cran.r-project.org/web/packages/vegan/vegan.pdf.

  • Pang, W. & Q. Wang, 2013. A new species, Synuramorusimila sp. nov. (Chrysophyta), from Great Xing’an Mountains, China. Phytotaxa 88: 55–60.

    Article  Google Scholar 

  • Ptacnik, R., T. Andersen, P. Brettum, L. Lepistö & E. Willén, 2010. Regional species pools control community saturation in lake phytoplankton. Proceedings of the Royal Society B277: 3755–3764.

    Article  Google Scholar 

  • R Development Core Team, 2013. R: A Language and Environment for Statistical Computing, Ver. 3.0.2. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Saxby-Rouen, K. J., B. S. C. Leadbeater & C. S. Reynolds, 1998. The relationship betweenthe growth of Synura petersenii (Synurophyceae) and components of the dissolvedinorganic carbon system. Phycologia 37: 467–477.

    Article  Google Scholar 

  • Sandgren, C. D., 1988. The ecology of chrysophyte flagellates: their growth and perennation strategies as freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 9–104.

    Google Scholar 

  • Scoble, J. M. & T. Cavalier-Smith, 2014. Scale evolution in Paraphysomonadida (Chrysophyceae): sequence phylogeny and revised taxonomy of Paraphysomonas, new genus Clathromonas, and 25 new species. European Journal of Protistology. doi:10.1016/j.ejop.2014.08.001.

    PubMed Central  Google Scholar 

  • Sims, P. A., D. G. Mann & L. K. Medlin, 2006. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45: 361–402.

    Article  Google Scholar 

  • Siver, P. A., 1988. The distribution and ecology of Spiniferomonas (Chrysophyceae) in Connecticut (USA). Nordic Journal of Botany 8: 205–212.

    Article  Google Scholar 

  • Siver, P. A., 1991. The Biology of Mallomonas. Morphology, Taxonomy, Ecology. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Siver, P. A., 1993. Inferring lakewater specific conductivity with scaled chrysophytes. Limnology and Oceanography 38: 1480–1492.

    Article  CAS  Google Scholar 

  • Siver, P. A., 1995. The distribution of chrysophytes along environmental gradients: their use as biological indicators. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Cambridge University Press, Cambridge: 232–268.

    Chapter  Google Scholar 

  • Siver, P. A. & J. S. Hamer, 1989. Multivariate statistical analysis of the factors controlling the distribution of scaled chrysophytes. Limnology and Oceanography 34: 368–381.

    Article  CAS  Google Scholar 

  • Siver, P. A. & A. M. Lott, 2012. Biogeographic patterns in scaled chrysophytes from the east coast of North America. Freshwater Biology 57: 451–466.

    Article  Google Scholar 

  • Siver, P. A. & A. P. Wolfe, 2005. Eocene scaled chrysophytes with pronounced modernaffinities. International Journal of Plant Sciences 166: 533–536.

    Article  Google Scholar 

  • Siver, P. A., L. N. Voloshko, O. V. Gavrilova & M. V. Getsen, 2005. The scaled chrysophyte flora of the Bolshezemelskaya tundra (Russia). Nova Hedwigia, Beiheft 128: 125–150.

    Google Scholar 

  • Škaloudová, M. & P. Škaloud, 2013. A new species of Chrysosphaerella (Chrysophyceae: Chromulinales), Chrysosphaerella rotundata, sp. nov., from Finland. Phytotaxa 130: 34–42.

    Article  Google Scholar 

  • Škaloud, P., J. Kristiansen & M. Škaloudová, 2013a. Developments in the taxonomy of silica-scaled chrysophytes – from morphological and ultrastructural to molecular approaches. Nordic Journal of Botany 31: 385–402.

    Article  Google Scholar 

  • Škaloud, P., M. Škaloudová, M. Pichrtová, Y. Němcová, J. Kreidlová & M. Pusztai, 2013b. A database on distribution and ecology of silica-scaled chrysophytes in Europe. Nova Hedwigia, Beiheft [available on internet at www.chrysophytes.eu] 142: 141–146.

  • Škaloud, P., M. Škaloudová, A. Procházková & Y. Němcová, 2014. Morphological delineation and distribution patterns of four newly described species within the Synurapetersenii species complex (Chrysophyceae, Stramenopiles). European Journal of Phycology 49: 213–229.

    Article  Google Scholar 

  • Smol, J. P., 2005. Applications of chrysophytes to problems in paleoecology. In Sandgren, C. D., J. P. Smol & J. Kristiansen (eds), Chrysophyte Algae. Cambridge University Press, Cambridge: 232–268.

    Google Scholar 

  • Snoeijs, P., 1994. Distribution of epiphytic diatom species composition, diversity and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Research 9: 189–211.

    Article  Google Scholar 

  • Snoeijs, P., 1999. Marine and brackish waters. In Rydin, H., P. Snoeijs, & M. Diekmann (eds), Swedish Plant Geography. Acta Phytogeographica Suecica 84:187–212.

  • Soininen, J., J. J. Korhonen, J. Karhu & A. Vetterli, 2011. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography 56: 508–520.

    Article  Google Scholar 

  • Ulanova, A. & P. Snoeijs, 2006. Gradient responses of epilithic diatom communities in the Baltic Sea proper. Estuarine, Coastal and Shelf Science 68: 661–674.

    Article  Google Scholar 

  • Ulanova, A., S. Busse & P. Snoeijs, 2009. Coastal diatom–environment relationships in the brackish Baltic sea. Journal of Phycology 45: 54–68.

    Article  Google Scholar 

  • Vyverman, W., E. Verleyen, K. Sabbe, K. Vanhoutte, M. Sterken, D. A. Hodgson, D. G. Mann, S. Juggins, B. Van de Vijver, V. Jones, R. Flower, D. Roberts, V. A. Chepurnov, C. Kilroy, P. Vanormelingen & A. De Wever, 2007. Historical processes constrain patterns in global diatom diversity. Ecology 88: 1924–1931.

    Article  PubMed  Google Scholar 

  • Wesslander, K., P. Hall, S. Hjalmarsson, D. Lefevre, A. Omstedt, A. Rutgersson, E. Sahlée & A. Tengberg, 2011. Observed carbon dioxide and oxygen dynamics in a Baltic Sea coastal region. Journal of Marine Systems 86: 1–9.

    Article  Google Scholar 

  • Wolfe, A. P. & P. A. Siver, 2013. A hypothesis linking chrysophyte microfossils to lake carbon dynamics on ecological and evolutionary time scales. Global and Planetary Change 111: 189–198.

    Article  Google Scholar 

  • Wujek, D. E., J. L. Wee & J. E. Van Kley, 2002. Silica-scaled chrysophytes and synurophytes from east Texas. Journal of Science 54: 27–36.

    Google Scholar 

Download references

Acknowledgments

This work was supported by Institutional Funds of Charles University in Prague. We acknowledge Umeå University and Umeå Marine Sciences Center for hosting us in the field station in Norrbyn and providing a base for sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Němcová.

Additional information

Guest editors: Luigi Naselli-Flores & Judit Padisák / Biogeography and Spatial Patterns of Biodiversity of Freshwater Phytoplankton

Electronic supplementary material

Below is the link to the electronic supplementary material.

10750_2015_2424_MOESM1_ESM.pdf

Supplementary material 1 (PDF 686 kb). Supplementary Table 1. List of identified species (including Kendall tau coefficient T and probability P). Supplementary Table 2. List of localities including geographical location and environmental variables

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Němcová, Y., Pusztai, M., Škaloudová, M. et al. Silica-scaled chrysophytes (Stramenopiles, Ochrophyta) along a salinity gradient: a case study from the Gulf of Bothnia western shore (northern Europe). Hydrobiologia 764, 187–197 (2016). https://doi.org/10.1007/s10750-015-2424-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2424-9

Keywords

Navigation