Skip to main content
Log in

Variation in benthic invertebrate abundance along thermal gradients within headwater streams of a temperate basin in Japan

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

To better understand the impacts of water temperature variation on stream invertebrates, we sampled benthic assemblages and measured water temperature monthly in headwater streams located in northeast Japan during 2011 and 2012. The sites in headwater streams had similar hydraulic and topographical settings, were free of man-made structures, and ranged in elevation from 100 to 850 m above sea level. The results of month-by-month analysis on the relationship between temperature and Plecoptera density revealed that the abundance declined with highly elevated temperatures in mid-summer (July, August). The strongest relationship between variation in Plecoptera abundance (June to October in 2012), however, and water temperature occurred during early summer (June). Thus, early summer temperatures contribute to greater seasonal increase in abundance, suggesting that snapshot data may be unreliable for detecting consistent relationships between the abundance and temperature. The degree of similarity in benthic fauna between sites was significantly negatively correlated with differences in water temperature but not correlated with geographical distance. These results suggest that faunal composition varies along the water temperature gradient rather than habitat connectivity in temperate headwater streams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bachman, R. A., 1984. Foraging behavior of free-ranging wild and hatchery brown trout in a stream. Transactions of the American Fisheries Society 113: 1–32.

    Article  Google Scholar 

  • Brielmann, H., C. Griebler, S. Schmidt, M. Rainer & T. Lueders, 2009. Effects of thermal energy discharge on shallow groundwater ecosystems. Federation of European Microbiological Societies Microbiology Ecology 68: 273–286.

    Article  CAS  Google Scholar 

  • Brittain, J. E., 1991. Effect of temperature on egg development in the Australian stonefly genus, Austrocercella lilies (Plecoptera: Notonemouridae). Australian Journal of Marine and Freshwater Research 42: 107–114.

    Article  Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.

    Article  Google Scholar 

  • Buisson, L. L., G. G. Blanc & G. Grenouillet, 2008. Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish 17: 244–257.

    Article  Google Scholar 

  • Butryn, R. S., D. L. Parrish & D. M. Rizzo, 2013. Summer stream temperature metrics for predicting brook trout (Salvelinus fontinalis) distribution in streams. Hydrobiologia 703: 47–57.

    Article  Google Scholar 

  • Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.

    Article  Google Scholar 

  • Chang, H. & I. Jung, 2012. Spatial patterns of March and September streamflow trends in Pacific Northwest streams, 1958–2008. Geographical Analysis 44: 177–201.

    Article  Google Scholar 

  • Cummins, K. W., 1974. Structure and function of stream ecosystems. BioScience 24: 631–641.

    Article  Google Scholar 

  • Domisch, S., S. C. Jähnig & P. Haase, 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology 56: 2009–2020.

    Article  Google Scholar 

  • Duggan, I., I. Boothroyd & D. Speirs, 2007. Factors affecting the distribution of stream macroinvertebrates in geothermal areas: Taupo Volcanic Zone, New Zealand. Hydrobiologia 592: 235–247.

    Article  CAS  Google Scholar 

  • Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942–957.

    Article  Google Scholar 

  • Filipe, A. F., J. E. Lawrence & N. Bonada, 2013. Vulnerability of stream biota to climate change in mediterranean climate regions: a synthesis of ecological responses and conservation challenges. Hydrobiologia 719: 331–351.

    Google Scholar 

  • Gaufin, A. R. & S. Hern, 1971. Laboratory studies on tolerance of aquatic insects to heated waters. Journal of the Kansas Entomological Society 44: 240–245.

    Google Scholar 

  • Grimm, N. B., 1988. Role of macroinvertebrates in nitrogen dynamics of a desert stream. Ecology 69: 1884–1893.

    Article  Google Scholar 

  • Gunawardhana, L. N. & S. Kazama, 2012. Statistical and numerical analyses of the influence of climate variability on aquifer water levels and groundwater temperatures: the impacts of climate change on aquifer thermal. Global and Planetary Change 86–87: 66–78.

    Article  Google Scholar 

  • Haidekker, A. & D. Hering, 2008. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology 42: 463–481.

    Article  Google Scholar 

  • Hawkins, C. P., J. N. Hogue, L. M. Decker & J. W. Feminella, 1997. Channel morphology, water temperature, and assemblage structure of stream insects. Journal of the North American Benthological Society 16: 728–749.

    Article  Google Scholar 

  • Heino, J., 2001. Regional gradient analysis of freshwater biota: do similar biogeographic patterns exist among multiple taxonomic groups? Journal of Biogeography 28: 69–76.

    Article  Google Scholar 

  • Jacobsen, D., R. Schultz & A. Encalda, 1997. Structure and diversity of stream invertebrate assemblages: the influence of temperature with altitude and latitude. Freshwater Biology 38: 247–261.

    Article  Google Scholar 

  • Jacoby, J. M., 1987. Alterations in periphyton characteristics due to grazing in a Cascade foothill stream. Freshwater Biology 18: 495–508.

    Article  Google Scholar 

  • Karr, J. & D. Dudley, 1981. Ecological perspective on water quality goals. Environmental Management 5: 55–68.

    Article  Google Scholar 

  • Kawai, T., 2005. Aquatic Insects of Japan: Manual with Keys and Illustration. Tokai University Press, Tokyo. (in Japanese).

    Google Scholar 

  • Kreutzweiser, D. P., S. S. Capell & S. B. Holmesa, 2009. Stream temperature responses to partial-harvest logging in riparian buffers of boreal mixedwood forest watersheds. Canadian Journal of Forest Research 39: 497–506.

    Article  Google Scholar 

  • Lang, C. & O. Reymond, 1995. An improved index of environmental quality for Swiss rivers based on benthic invertebrates. Aquatic Sciences 57: 172–180.

    Article  Google Scholar 

  • Meyer, J., M. Sale, P. Mulholland & N. Poff, 1999. Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35: 1373–1386.

    Article  Google Scholar 

  • Mielke, O. H. H., E. Carneiro & M. M. Casagrande, 2012. Hesperiidae (Lepidoptera, Hesperioidea) from Ponta Grossa, Paraná, Brazil: 70 years of records with special reference to faunal composition of Vila Velha State Park. Revista Brasileira de Entomologia 56: 59–66.

    Article  Google Scholar 

  • Moore, R. D. & S. M. Wondzell, 2005. Physical hydrology and the effects of forest harvesting in the Pacific Northwest: a review. Journal of the American Water Resources Association 41: 753–784.

    Google Scholar 

  • Morrill, J. C., R. C. Bales & M. H. Conklin, 2005. Estimating stream temperature from air temperature: implications for future water quality. Journal of Environmental Engineering 131: 139–146.

    Article  CAS  Google Scholar 

  • Nukazawa, K., J. Shiraiwa & S. Kazama, 2011. Evaluations of seasonal habitat variations of freshwater fishes, fireflies, and frogs using a habitat suitability index model that includes river water temperature. Ecological Modelling 222: 3718–3726.

    Article  Google Scholar 

  • Parry, M., O. Canziani, J. Palutikof, P. V. Linden & C. Hanson, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability. Summary for Policymakers. Cambridge University Press, New York.

    Google Scholar 

  • Pierce, R. J., 1986. Foraging responses of stilts (Himantopus spp.: Aves) to changes in behavior and abundance of riverbed prey. New Zealand Journal of Marine and Freshwater Research 20: 17–28.

    Article  Google Scholar 

  • Qu, R., X. Cui, H. Yan, E. Ma & J. Zhan, 2013. Impacts of Land Cover Change on the Near-Surface Temperature in the North China Plain. Advances in Meteorology (Article ID 409302).

  • Quinn, J. & C. Hickey, 1990. Characterisation and classification of benthic invertebrate communities in 88 New Zealand rivers in relation to environmental factors. New Zealand Journal of Marine and Freshwater Research 24: 387–409.

    Article  CAS  Google Scholar 

  • Quinn, J. & G. Steele, 1994. Upper thermal tolerances of twelve New Zealand stream invertebrate species. New Zealand Journal of Marine and Freshwater Research 28: 391–397.

    Article  Google Scholar 

  • Revenga, C., I. Campbell, R. Abell, P. Villiers & M. Bryer, 2005. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of The Royal Society B: Biological Sciences 360: 397–413.

    Article  CAS  Google Scholar 

  • Richardson, J. S. & R. J. Danehy, 2007. A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. Forest Science 53: 131–147.

    Google Scholar 

  • Ruesch, A. S., C. E. Torgersen, J. J. Lawler, J. D. Olden, E. E. Peterson, C. J. Volk & D. J. Lawrence, 2012. Projected climate-induced habitat loss for Salmonids in the John Day River Network, Oregon, U.S.A. Conservation Biology 26: 873–882.

    Article  PubMed  Google Scholar 

  • Shannon, C. E., 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423.

    Article  Google Scholar 

  • Smith, K., 1972. River water temperatures - an environmental review. Scottish Geographical Magazine 88: 211–220.

    Article  Google Scholar 

  • Sørensen, T., 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Biologiske Meddelser Kongelige Danske Viednskabernes Selskab 5: 1–34.

    Google Scholar 

  • Statzner, B. & B. Higler, 1986. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.

    Article  Google Scholar 

  • Story, A., R. D. Moore & J. S. Macdonald, 2003. Stream temperatures in two shaded reaches below cut blocks and logging roads: downstream cooling linked to subsurface hydrology. Canadian Journal of Forest Research 33: 1383–1396.

    Article  Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1986. Growth and production of a stream stonefly: influences of diet and temperature. Ecology 67: 1396–1410.

    Article  Google Scholar 

  • Taylor, C. A. & H. G. Stefan, 2009. Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology 375: 601–612.

    Article  CAS  Google Scholar 

  • Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushiong, 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130–137.

    Article  Google Scholar 

  • Watanabe, K., S. Kazama, T. Omura & M. T. Monaghan, 2014. Adaptive genetic divergence along narrow environmental gradients in four stream insects. PLoS One 9: e93055.

    Article  PubMed Central  PubMed  Google Scholar 

  • Webb, B. W., D. M. Hannah, R. D. Moore, L. E. Brown & F. Nobilis, 2008. Recent advances in stream and river temperature research. Hydrological Processes 22: 902–918.

    Article  Google Scholar 

  • Wigington Jr, P. J., J. L. Ebersole, M. E. Colvin, S. G. Leibowrtz, B. Miller, B. Hansen, H. Lavigne, D. White, J. P. Baker, M. R. Church, J. R. Brooks, M. A. Cairns & J. E. Compton, 2006. Coho salmon dependence on intermittent streams. Frontiers in Ecology and the Environment 4: 513–518.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by the Ministry of Education, Science, Sports, and Culture through a Grant-in-Aid for Scientific Research (A) (25241024, Yasuhiro Takemon, 2013–2016), Young Scientists (B) (26820196, Kei Nukazawa, 2014–2016) and Challenging Exploratory Research (26630247, Kozo Watanabe, 2014–2016) and the Japan Society for the Promotion of Science Research Fellowship (Grant #: 256493). Finally, we would like to thank the handling editor and anonymous reviewers for offering fruitful suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Arai.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arai, R., Nukazawa, K., Kazama, S. et al. Variation in benthic invertebrate abundance along thermal gradients within headwater streams of a temperate basin in Japan. Hydrobiologia 762, 55–63 (2015). https://doi.org/10.1007/s10750-015-2336-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2336-8

Keywords

Navigation