Skip to main content

Advertisement

Log in

Vegetation and soil response to hydrology in a re-created Everglades

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Water depth and flow effects on growth and nutrient content of three marsh plants (Cladium jamaicense Crantz, Eleocharis cellulosa Torr., and Nymphaea odorata Aiton) and on soil-building were estimated in the Loxahatchee Impoundment Landscape Assessment where macrocosms contain habitats distinguished by relative water depth (deep slough, shallow slough, and mid-ridge) but that differ in flow. We hypothesized that optimal growth would vary with water depth and species, paralleling distributions in the natural environment, and that growth and tissue nutrients would be positively affected by flow. In addition, we hypothesized that plant morphology would influence sediment deposition with the dense growth of C. jamaicense supporting greatest accretion. Our hypotheses were partly supported. Cladium jamaicense unexpectedly grew best in deep sloughs at depths greater than previously reported. Eleocharis cellulosa had a wide depth tolerance and grew best in flowing conditions. Nymphaea odorata grew best in slough habitats. Nutrient contents differed among species and plant parts but were not affected by flow. Soil accretion did not vary with biomass but partially varied with depth and flow, both key factors in conceptual models of vegetation and soil dynamics in wetlands, especially in the Everglades ridge-and-slough topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aich, S., T. W. Dreschel, E. A. Cline & F. H. Sklar, 2011. The development of a geographic information system (GIS) to document research in an Everglades physical model. Journal of Environmental Science and Engineering 5: 289–302.

    Google Scholar 

  • Baksh, S. I. & J. H. Richards, 2006. An architectural model for Eleocharis: Morphology and development of Eleocharis cellulosa (Cyperaceae). American Journal of Botany 93: 707–715.

    Article  PubMed  Google Scholar 

  • Bernhardt, C. E. & D. A. Willard, 2009. Response of the Everglades ridge and slough landscape to climate variability and 20th-century water management. Ecological Applications 19: 1723–1738.

    Article  PubMed  Google Scholar 

  • Bloom, A. J., F. S. Chapin & H. A. Mooney, 1985. Resource limitation in plants – an economic analogy. Annual Review of Ecological Systems 16: 363–392.

    Article  Google Scholar 

  • Bouma, T. J., M. B. De Vries, E. Low, G. Peralta, I. C. Tanczos, J. van de Koppel & P. M. J. Herman, 2005. Trade-offs related to ecosystem engineering: a case study on stiffness of emerging macrophytes. Ecology 86(8): 2187–2199.

    Article  Google Scholar 

  • Boumans, R. M. J. & J. W. Day, 1993. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries and Coasts 16: 375–380.

    Article  Google Scholar 

  • Cairns, M. A., S. Brown, E. H. Helmer & G. A. Baumgardner, 1997. Root biomass allocation in the world’s upland forests. Oecologia 111: 1–11.

    Article  Google Scholar 

  • Chen, H., I. A. Mendelssohn, B. Lorenzen, H. Brix & S. Miao, 2005. Growth and nutrient responses of Eloecharis cellulosa (Cyperaceae) to phosphate level and redox intensity. American Journal of Botany 92: 1457–1466.

  • Childers, D. L., D. Iwaniec, D. Rondeau, G. Rubio, E. Verdon & C. J. Madden, 2006. Responses of sawgrass and spikerush to variation in hydrologic drivers and salinity in Southern Everglades marshes. Hydrobiologia 569: 273–292.

    Article  Google Scholar 

  • Craft, C. B. & C. J. Richardson, 1993. Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecological Applications 3: 446–458.

    Article  Google Scholar 

  • Craft, C. B. & C. J. Richardson, 1998. Recent and long-term organic soil accretion and nutrient accumulation in Everglades. Soil Science Society of American Journal 62: 834–843.

    Article  CAS  Google Scholar 

  • David, P. G., 1996. Changes in plant communities relative to hydrologic conditions in the Florida Everglades. Wetlands 16: 15–23.

    Article  Google Scholar 

  • Davis, J.H. 1946. The peat deposits in Florida: Their occurrence, development, and uses. Geol. Bull. 30. Florida Geological Survey, Tallahassee.

  • Davis, S. M., L. H. Gunderson, W. A. Park, J. R. Richardson & J. E. Mattson, 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. In Davis, S. M. & J. C. Ogden (eds), Everglades: The Ecosystem and its Restoration. St. Lucie Press, Boca Raton, FL: 419–444.

    Google Scholar 

  • Edwards, A. L., D. W. Lee & J. H. Richards, 2003. Responses to a fluctuating environment: effects of water depth on growth and biomass allocation in Eleocharis cellulosa Torr. (Cyperaceae). Canadian Journal of Botany 81: 964–975.

    Article  Google Scholar 

  • Gann, D. & J. Richards, 2015. Quantitative comparison of plant community hydrology using large-extent, long-term data. Wetlands 35: 81–93.

    Article  Google Scholar 

  • Givnish, T. J., J. C. Volin, V. D. Owen, V. C. Volin, J. D. Muss & P. H. Glaser, 2008. Vegetation differentiation in the patterned landscape of the central Everglades: importance of local and landscape drivers. Global Ecology and Biogeography 17: 384–402.

    Article  Google Scholar 

  • Gleason, P. J. & P. Stone, 1994. Age, origin, and landscape evolution of the Everglades peatland. In Davis, S. M. & J. C. Ogden (eds), Everglades, The Ecosystem and its Restoration. St. Lucie Press, Delray Beach, FL: 149–197.

    Google Scholar 

  • Hagerthey, S. E., S. Newman, K. Rutchey, E. P. Smith & J. Godin, 2008. Multiple regime shifts in a subtropical peatland: community-specific thresholds to eutrophication. Ecological Monographs 78: 547–565.

    Article  Google Scholar 

  • Herndon, A., L. Gunderson & J. Stenberg, 1991. Sawgrass (Cladium jamaicense) survival in a regime of fire and flooding. Wetlands 11: 17–28.

    Article  Google Scholar 

  • Lago, M. E., F. Miralles-Wilhelm, M. Mahmoudi & V. Engel, 2010. Numerical modeling of the effects of water flow, sediment transport and vegetation growth on the spatiotemporal patterning of the ridge and slough landscape of the Everglades wetland. Advances in Water Resources 33: 1268–1278.

    Article  Google Scholar 

  • Larsen, L. G., J. W. Harvey & J. P. Crimaldi, 2007. A delicate balance; ecohydrological feedbacks governing landscape morphology in a lotic peatland. Ecological Monographs 77: 591–614.

    Article  Google Scholar 

  • Larsen, L. G., J. W. Harvey & J. P. Crimaldi, 2009. Predicting bed shear stresses and its role in sediment dynamics and restoration potential of the Everglades and other vegetated flow systems. Ecological Engineering 35: 1773–1785.

    Article  Google Scholar 

  • Larsen, L., N. Aumen, C. Bernhardt, V. Engel, T. Givnish, S. Hagerthey, J. W. Harvey, L. Leonard, P. McCormick, C. McVoy, G. B. Noe, M. Nugesser, K. Rutchey, F. Sklar, T. Troxler, J. Volin & D. Willard, 2011. Recent and historic drivers of landscape change in the Everglades ridge, slough, and tree island mosaic. Critical reviews in environmental science and technology 41: 344–381.

    Article  CAS  Google Scholar 

  • LoGalbo, A. M., M. S. Zimmerman, D. Hallac, G. Reynolds, J. H. Richards & J. H. Lynch, 2013. Using hydrologic suitability for native Everglades slough vegetation to assess Everglades restoration scenarios. Ecological Indicators 24: 294–304.

    Article  Google Scholar 

  • Miao, S. L. & C. B. Zou, 2012. Effects of inundation on growth and nutrient allocation of six major macrophytes in the Florida Everglades. Ecological Engineering 42: 10–18.

    Article  Google Scholar 

  • McCormick, P. V., S. Newman & L. W. Vilchek, 2009. Landscape responses to wetland eutrophication: loss of slough habitat in the Florida Everglades, USA. Hydrobiologia 621: 105–114.

    Article  CAS  Google Scholar 

  • McVoy, C. V., W. P. Said, J. Obeysekera, J. Van Arman & T. Dreschel, 2011. Landscapes and Hydrology of the Pre Drainage Everglades. University Press of Florida: 576 pp.

  • Newman, D. W. & L. E. Sommers, 1996. Total carbon, organic carbon, and organic matter. In Sparks, D. L. (ed.), Methods of Soil Analysis No. 5 Part 3, Chemical Methods. Soil Science Society of America, Inc., Madison, WI: 961–1010.

    Google Scholar 

  • Newman, S., J. B. Grace & J. W. Koebel, 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restoration. Ecological Applications 6: 774–783.

    Article  Google Scholar 

  • Newman, S., H. Kumpf, J. A. Laing & W. C. Kennedy, 2001. Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry 54: 229–250.

    Article  CAS  Google Scholar 

  • Newman, S., P. V. McCormick, S. L. Miao, J. A. Laing, W. C. Kennedy & M. B. O’Dell, 2004. The effect of phosphorus enrichment on the nutrien status of a northern Everglades slough. Wetlands Ecology and Management 12: 63–79.

    Article  CAS  Google Scholar 

  • NOAA, 2011. Rainy season underway. Driest October to May period on record in West Palm Beach, Fort Lauderdale and Naples [Online]. National Oceanic and Atmospheric Administration. http://www.srh.noaa.gov/images/mfl/news/2011RainySeasonOnset.pdf. Accessed 21 Feb 2014.

  • Noe, G. B., D. L. Childers, A. L. Edwards, E. Gaiser, K. Jayachandran, D. Lee, J. Meeder, J. Richards, L. J. Scinto, J. C. Trexler & R. D. Jones, 2002. Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry 59: 239–267.

    Article  CAS  Google Scholar 

  • Noe, G. B. & D. L. Childers, 2007. Phosphorus budgets in Everglades wetland ecosystems: the effects of hydrology and nutrient enrichment. Wetlands Ecology and Management 15: 189–205.

    Article  Google Scholar 

  • Noe, G. B., J. W. Harvey, R. W. Schaffranek & L. G. Larsen, 2010. Controls of suspended sediment concentration, nutrient content, and transport in a subtropical wetland. Wetlands 30: 39–54.

    Article  Google Scholar 

  • Ogden, J. C., 2005. Everglades ridge and slough conceptual ecological model. Wetlands 25(4): 810–820.

    Article  Google Scholar 

  • Richards, J. H. & D. Gann, 2008. Determining plant community depth and hydroperiod optima and tolerances, Final Report for P.O. #4500023883, South Florida Water Management District: 57 pp.

  • Richards, J.H., T.E. Philippi, P. Kalla, and D. Scheidt. 2008. Characterization of southern Florida marsh vegetation using a landscape scale random sample: R-EMAP Phase III Vegetation Sampling. In Greater Everglades Ecosystem Restoration (GEER) meeting, Naples, FL, Jul 2008.

  • Richards, J. H., T. G. Troxler, D. W. Lee & M. S. Zimmerman, 2011. Experimental determination of effects of water depth on Nymphaea odorata growth, morphology and biomass allocation. Aquatic Botany 95: 9–16.

    Article  Google Scholar 

  • Ross, M. S., D. L. Reed, J. P. Sah, P. L. Ruiz & M. T. Lewin, 2003. Vegetation: environment relationships and water management in Shark Slough. Everglades National Park. Wetlands Ecology and Management 11: 291–303.

    Article  Google Scholar 

  • Ross, M. S., S. Mitchell-Bruker, J. P. Sah, S. Stothoff, P. L. Ruiz, D. L. Reed, K. Jayachandran & C. L. Coultas, 2006. Interaction of hydrology and nutrient limitation in the Ridge and Slough landscape of the southern Everglades. Hydrobiologia 569: 37–59.

    Article  CAS  Google Scholar 

  • Scinto, L. J., R. M. Price, M. S. Ross & A. Serna, 2013. South Florida Water Management District (SFWMD) Final Report: LILA (Loxahatchee Impoundment Landscape Assessment) Tree Island, Ridge, Slough Studies and Site Management. Contract No. 4600001816. Report Period: July 12, 2009 to September 17, 2012. Submitted by Florida International University to SFWMD.

  • Serna, A., J. H. Richards & L. J. Scinto, 2013. Plant decomposition in wetlands: effects of hydrologic variation in a recreated Everglades. Journal of Environmental Quality 42: 562–572.

    Article  CAS  PubMed  Google Scholar 

  • Sinden-Hempstead, M. & K. T. Killingbeck, 1996. Influences of water depth and substrate nitrogen on leaf surface area and maximum bed extension in Nymphaea odorata. Aquatic Botany 53: 151–162.

    Article  Google Scholar 

  • Solórzano, L. & J. H. Sharp, 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters. Limnology and Oceanography 25: 54–758.

    Google Scholar 

  • Tooth, S. & G. C. Nanson, 2000. The role of vegetation in the formation of anabranching channels in an ephemeral river, northern plains, arid central Australia. Hydrological Processes 14: 3099–3117.

    Article  Google Scholar 

  • USACE & SFWMD, 1999. Central and Southern Florida Project comprehensive review study final integrated feasibility report and programmatic environmental impact statement. U.S. Army Corps of Engineers, Jacksonville District, Jacksonville, FL and South Florida Water Management District, West Palm Beach, FL.

  • USEPA, 1983. Methods for Chemical Analysis of Water and Wastes, Revision 1983. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Vaithiyanathan, P. & C. J. Richardson, 1999. Macrophyte species changes in the Everglades: examination along a eutrophication gradient. Journal of Environmental Quality 28: 1347–1358.

    Article  CAS  Google Scholar 

  • Wassen, M. J., W. H. M. Peeters & H. Olde Venterink, 2003. Patterns in vegetation, hydrology, and nutrient availability in an undisturbed river floodplain in Poland. Plant Ecology 165: 27–43.

    Article  Google Scholar 

  • Watts, D. L., M. J. Cohen, J. B. Heffernan & T. Z. Osborne, 2010. Hydrologic modification and the loss of self-organized patterning in the ridge-slough mosaic of the Everglades. Ecosystems 13: 813–827.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded through grant no. EN-83298101 from the U.S. Environmental Protection Agency (USEPA) to the Southeast Environmental Research Center at Florida International University (SERC/FIU), with additional intellectual and technical support from the South Florida Water Management District (SFWMD): Fred Sklar, Thomas Dreschel, and Eric Cline. The authors acknowledge the field and laboratory assistance provided by Ryan Desliu, Robert Schroeder, Valentin Nichita, and Diana Johnson, and the constructive comments of Jay Sah and Michael Ross to improve the quality of this work. This is SERC contribution number 718.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonard J. Scinto.

Additional information

Handling editor: Chris Joyce

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serna, A., Richards, J.H., Troxler, T.G. et al. Vegetation and soil response to hydrology in a re-created Everglades. Hydrobiologia 757, 167–183 (2015). https://doi.org/10.1007/s10750-015-2249-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2249-6

Keywords

Navigation