Skip to main content

Advertisement

Log in

Water quality changes following nutrient loading reduction and biomanipulation in a large shallow subtropical lake, Lake Griffin, Florida, USA

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake Griffin received discharges for decades from muck farms developed on former floodplain wetlands, leading to hypereutrophic conditions. Management actions included wetland restoration of farmland to reduce nutrient discharges, and harvesting of gizzard shad to remove nutrients in fish biomass and reduce nutrient recycling from sediments. Despite a reported susceptibility to wind-driven sediment resuspension, there have been substantial improvements in water quality in Lake Griffin, including decreases in nutrient concentrations, chlorophyll-a, and cyanobacterial biovolume, and increases in water transparency. Water quality improvements in Lake Griffin were substantially greater than occurred in ten comparison lakes. External nutrient load reduction was the primary factor contributing to water quality improvement, although there was evidence of an effect of shad harvesting, including correlations between shad catch per unit effort and nutrient concentrations, and an estimated effect of biomass removal and recycling reduction accounting for about 40% of the external load during the harvest period. Net production of total nitrogen in the lake was strongly related to external total phosphorus loading, indicating phosphorus limitation of nitrogen fixation. The response of Lake Griffin indicates that the combination of external nutrient load reduction and biomanipulation can result in sustained improvements in water quality in shallow subtropical lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr, 2000. The potential for wave disturbance in shallow Florida lakes. Lake and Reservoir Management 16: 281–291.

    Article  Google Scholar 

  • Bachmann, R. W., M. V. Hoyer, C. Fernandes & D. E. Canfield Jr, 2003. An alternative to proposed phosphorus TMDLs for the management of Lake Okeechobee. Lake and Reservoir Management 19: 251–264.

    Article  CAS  Google Scholar 

  • Bachmann, R. W., B. L. Jones, D. D. Fox, M. Hoyer, L. A. Bul & D. E. Canfield Jr, 1996. Relations between trophic state indicators and fish in Florida (U.S.A.) lakes. Canadian Journal of Fisheries and Aquatic Sciences 53: 842–855.

    Article  Google Scholar 

  • Benndorf, J., W. Böing, J. Koop & I. Neubauer, 2002. Top–down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshwater Biology 47: 2282–2295.

    Article  Google Scholar 

  • Brabrand, Å., B. A. Faafeng & J. P. M. Nilssen, 1990. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Canadian Journal of Fisheries and Aquatic Sciences 47: 364–372.

    Article  Google Scholar 

  • Bremigan, M. T. & R. A. Stein, 2001. Variable gizzard shad recruitment with reservoir productivity: causes and implications for classifying systems. Ecological Applications 11: 1425–1437.

    Article  Google Scholar 

  • Canfield Jr, D. E. & R. W. Bachmann, 1981. Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Canadian Journal of Fisheries and Aquatic Sciences 38: 414–423.

    Article  Google Scholar 

  • Canfield Jr, D. E., R. W. Bachmann & M. V. Hoyer, 2000. A management alternative for Lake Apopka. Lake and Reservoir Management 16: 205–221.

    Article  CAS  Google Scholar 

  • Catalano, M. J., M. S. Allen, M. H. Schaus, D. G. Buck & J. R. Beaver, 2010. Evaluating short-term effects of omnivorous fish removal on water quality and zooplankton at a subtropical lake. Hydrobiologia 655: 159–169.

    Article  CAS  Google Scholar 

  • Chapman, A. D. & C. L. Schelske, 1997. Recent appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida lakes. Journal of Phycology 33: 191–195.

    Article  Google Scholar 

  • Coveney, M. F., E. F. Lowe, L. E. Battoe, E. R. Marzolf & R. Conrow, 2005. Response of a eutrophic, shallow subtropical lake to reduced nutrient loading. Freshwater Biology 50: 1718–1730.

    Article  CAS  Google Scholar 

  • Danek, L. J., T. A. Barnard & M. S. Tomlinson, 1991. Bathymetric and Sediment Thickness Analysis of Seven Lakes in the Upper Oklawaha River Basin. Special Publication SJ 91-SP14. St. Johns River Water Management District, Palatka, FL. http://www.sjrwmd.com/technicalreports/index.html.

  • Deevey Jr, E. S., 1988. Estimation of downward leakage from Florida lakes. Limnology and Oceanography 33: 1308–1320.

    Article  Google Scholar 

  • Dicenzo, V. J., M. J. Maceina & M. R. Stimpert, 1996. Relations between reservoir trophic state and gizzard shad population characteristics in Alabama reservoirs. North American Journal of Fisheries Management 16: 888–895.

    Article  Google Scholar 

  • Drenner, R. W. & K. D. Hambright, 1999. Review: biomanipulation of fish assemblages as a lake restoration technique. Archiv für Hydrobiologie 146: 129–165.

    Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  • Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42: 537–543.

    Article  Google Scholar 

  • Frost, J. R., E. J. Phlips, R. S. Fulton, C. L. Schelske, W. Kenney & M. Cichra, 2008. Temporal trends of trophic state variables in a shallow hypereutrophic subtropical lake, Lake Griffin, Florida, USA. Fundamental and Applied Limnology 172: 263–271.

    Article  CAS  Google Scholar 

  • Fulton III, R. S., 1995. External Nutrient Budget and Trophic State Modeling for Lakes in the Upper Ocklawaha River Basin. Technical Publication SJ95-6. St. Johns River Water Management District, Palatka, FL. http://www.sjrwmd.com/technicalreports/index.html.

  • Fulton III, R. S. & D. Smith, 2008. Development of phosphorus load reduction goals for seven lakes in the upper Ocklawaha River Basin, Florida. Lake and Reservoir Management 24: 139–154.

    Article  Google Scholar 

  • Fulton III, R. S., C. Schluter, T. A. Keller, S. Nagid, W. Godwin, D. Smith, D. Clapp, A. Karama & J. Richmond, 2004. Pollutant Load Reduction Goals for Seven Major Lakes in the Upper Ocklawaha River Basin. Technical Publication SJ2004-5. St. Johns River Water Management District, Palatka, FL. http://www.sjrwmd.com/technicalreports/index.html.

  • Godwin, W., M. Coveney, E. Lowe & L. Battoe, 2011. Improvements in water quality following biomanipulation of gizzard shad (Dorosoma cepedianum) in Lake Denham, Florida. Lake and Reservoir Management 27: 287–297.

    Article  CAS  Google Scholar 

  • Håkanson, L., 1982. Lake bottom dynamics and morphometry: the dynamic ratio. Water Resources Research 18: 1444–1450.

    Article  Google Scholar 

  • Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-A. Nilsson, M. Søndergaard & J. Strand, 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems 1: 558–574.

    Article  Google Scholar 

  • Havens, K. E., E. J. Phlips, M. F. Cichra & B.-L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.

    Article  Google Scholar 

  • Havens, K. E., A. C. Elia, M. I. Taticchi & R. S. Fulton, 2009. Zooplankton–phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida, USA) and Trasimeno (Umbria, Italy). Hydrobiologia 628: 165–175.

    Article  CAS  Google Scholar 

  • Hessen, D. O., 1989. Factors determining the nutritive status and production of zooplankton in a humic lake. Journal of Plankton Research 11: 649–664.

    Article  CAS  Google Scholar 

  • Higgins, K. A., M. H. Vanni & M. J. González, 2006. Detritivory and the stoichiometry of nutrient cycling by a dominant fish species in lakes of varying productivity. Oikos 114: 419–430.

    Article  CAS  Google Scholar 

  • Hoxmeier, R. J. H. & D. R. Devries, 1998. Influence of trophic status on larval fish abundance in four southeastern United States reservoirs. Journal of Lake and Reservoir Management 14: 451–455.

    Article  Google Scholar 

  • Istvánovics, V., H. M. Shafik, M. Présing & S. Juhos, 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology 43: 257–275.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, K. E. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. T. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, S. Hilt, K. Kangur, J. Köhler, E. H. H. R. Lammens, T. L. Lauridsen, M. Manca, M. R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005a. Lake responses to reduced nutrient loading – an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. C. Branco, V. Huszar & F. Scasso, 2005b. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.), Tropical Eutrophic Lakes: Their Restoration and Management. Science Publishers, Enfield, NH: 331–359.

    Google Scholar 

  • Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. C. Branco, 2007a. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007b. Shallow lake restoration by nutrient loading reduction-some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    Article  CAS  Google Scholar 

  • Kopp, J. F. & G. D. McKee, 1983. Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Lawrence, S. G., D. F. Malley, W. J. Findlay, M. A. MacIver & I. L. Delbaere, 1987. Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Canadian Journal of Fisheries and Aquatic Sciences 44: 264–274.

    Article  Google Scholar 

  • Lazzaro, X. & F. L. R. M. Starling, 2005. Using biomanipulation to control eutrophication in a shallow tropical urban reservoir (Lago Paranoá, Brazil). In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. Science Publishers, Enfield, NH: 361–387.

    Google Scholar 

  • Magley, W., 2003. Total Maximum Daily Load for Total Phosphorus for Lake Griffin, Lake County, Florida. Watershed Assessment Section, Florida Department of Environmental Protection, Tallahassee, FL.

    Google Scholar 

  • McCauley, E., 1984. The estimation of the abundance and biomass of zooplankton in samples. In Downing, J. A. & F. H. Rigler (eds), A Manual for the Assessment of Secondary Productivity in Fresh Waters, IBP Handbook, No. 17. Blackwell Scientific Publishers, Oxford: 228–265.

    Google Scholar 

  • Mehta, A. J., J. M. Jaeger, A. Valle-Levinson, E. J. Hayter, E. Wolanski & A. J. Manning, 2009. Resuspension Dynamics in Lake Apopka, Florida. Final Report to St. Johns River Water Management District, Palatka, FL.

  • Meijer, M.-L., I. De Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in shallow lakes in the Netherlands: an evaluation of 18 case studies. Hydrobiologia 408(409): 13–30.

    Article  Google Scholar 

  • Nagid, E. J., D. E. Canfield Jr & M. V. Hoyer, 2001. Wind-induced increases in trophic state characteristics of a large (27 km2), shallow (1.5 m mean depth) Florida lake. Hydrobiologia 455: 97–110.

    Article  CAS  Google Scholar 

  • Olin, M., M. Rask, J. Ruuhijärvi, J. Keskitalo, J. Horppila, P. Tallberg, T. Taponen, A. Lehtovaara & I. Sammalkorpi, 2006. Effects of biomanipulation on fish and plankton communities in ten eutrophic lakes of southern Finland. Hydrobiologia 553: 67–88.

    Article  Google Scholar 

  • Phlips, E. J., J. Frost, M. Yilmaz, N. Steigerwalt & M. Cichra, 2005. Factors Controlling the Abundance and Composition of Blue-Green Algae in Lake Griffin. Special Publication SJ2005-SP4. St. Johns River Water Management District, Palatka, FL. http://www.sjrwmd.com/technicalreports/index.html.

  • Reckhow, K. H., 1991. EUTROMOD – Florida Lake Models. Duke University, Durham, NC.

    Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Ricker, W. E., 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191: 150–153.

    Google Scholar 

  • Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading. Expectations, Experiences, Extrapolations. Academia Verlag Richardz GmbH, St. Augustin.

    Google Scholar 

  • Scheffer, M., 2001. Alternative attractors of shallow lakes. TheScientificWorld 1: 254–263.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., R. Portielje & L. Zambrano, 2003. Fish facilitate wave resuspension of sediment. Limnology and Oceanography 48: 1920–1926.

    Article  Google Scholar 

  • Schaus, M. H. & M. J. Vanni, 2000. Effects of gizzard shad on phytoplankton and nutrient dynamics: role of sediment feeding and fish size. Ecology 81: 1701–1719.

    Article  Google Scholar 

  • Schaus, M. H., M. J. Vanni & T. E. Wissing, 2002. Biomass-dependent diet shifts in omnivorous gizzard shad: implications for growth, food web, and ecosystem effects. Transactions of the American Fisheries Society 131: 40–54.

    Article  Google Scholar 

  • Schaus, M. H., W. Godwin, L. Battoe, M. Coveney, E. Lowe, R. Roth, C. Hawkins, M. Vindigni, C. Weinberg & A. Zimmerman, 2010a. Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshwater Biology 55: 2401–2413.

    CAS  Google Scholar 

  • Schaus, M. H., W. W. Morris & A. Ford, 2010b. Quantifying the role of an omnivorous fish in Central Florida lakes: diet analysis and simulation modeling. Project #25244, Final Report to St. Johns River Water Management District, Palatka, FL.

  • Schaus, M. H., W. F. Godwin, L. E. Battoe, M. F. Coveney, E. F. Lowe, R. Roth, W. W. Morris & C. Hawkins, 2013. Effect of a size-selective biomanipulation on nutrient release by gizzard shad in Florida (USA) lakes. Knowledge and Management of Aquatic Ecosystems 411: 13.

    Article  Google Scholar 

  • Schelske, C. L. 1998. Sediment and Nutrient Deposition in Lake Griffin. Special Publication SJ98-SP13. St. Johns River Water Management District, Palatka, FL. http://www.sjrwmd.com/technicalreports/index.html.

  • Shafer, M. D., R. E. Dickinson, J. P. Heaney & W. C. Huber. 1986. Gazetteer of Florida Lakes. Publication No. 96. Water Resources Research Center, University of Florida, Gainesville, FL.

  • Søndergaard, M., E. Jeppesen, T. L. Lauridsen, C. Skov, E. H. Van Nes, R. Roijackers, E. Lammens & R. Portielje, 2007. Lake restoration: successes, failures and long-term effects. Journal of Applied Ecology 44: 1095–1105.

    Article  Google Scholar 

  • Søndergaard, M., L. Liboriussen, A. R. Pedersen & E. Jeppesen, 2008. Lake restoration by fish removal: short- and long-term effects in 36 Danish lakes. Ecosystems 11: 1291–1305.

    Article  Google Scholar 

  • Starling, F., X. Lazzaro, C. Cavalcanti & R. Moreira, 2002. Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence from a fish kill. Freshwater Biology 47: 2443–2452.

    Article  Google Scholar 

  • Strathmann, R. R., 1967. Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnology and Oceanography 12: 411–418.

    Article  CAS  Google Scholar 

  • Underwood, A. J., 1994. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecological Applications 4: 3–15.

    Article  Google Scholar 

  • Vanni, M. J., 2002. Nutrient cycling by animals in freshwater ecosystems. Annual Review of Ecology and Systematics 33: 341–370.

    Article  Google Scholar 

  • Vanni, M. J., K. K. Arend, M. T. Bremigan, D. B. Bunnell, J. E. Garvey, M. J. González, W. H. Renwick, P. A. Soranno & R. A. Stein, 2005. Linking landscapes and food webs: effects of omnivorous fish and watersheds on reservoir ecosystems. BioScience 55: 155–167.

    Article  Google Scholar 

  • Vollenweider, R. A. & J. J. Kerekes, 1982. Eutrophication of Waters, Monitoring, Assessment, and Control. OECD, Paris.

    Google Scholar 

  • Williams, J. D. H., T. P. Murphy & T. Mayer, 1976. Rates of accumulation on phosphorus forms in Lake Erie sediments. Journal of the Fisheries Research Board of Canada 33: 430–439.

    Article  CAS  Google Scholar 

  • Yako, L. A., J. M. Dettmers & R. A. Stein, 1996. Feeding preferences of omnivorous gizzard shad as influenced by fish size and zooplankton density. Transactions of the American Fisheries Society 125: 753–759.

    Article  Google Scholar 

Download references

Acknowledgments

Olivia Thomas assisted with experimental and commercial gill net sampling. BSA Inc. and Phycotech Inc. performed plankton analyses. We also wish to thank Dale Smith, Randy Roth, Sarita Pacchai Karki, and Brian Sparks for their contributions to this work, and Mike Coveney and three reviewers for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolland S. Fulton III.

Additional information

Handling editor: Karl E. Havens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulton, R.S., Godwin, W.F. & Schaus, M.H. Water quality changes following nutrient loading reduction and biomanipulation in a large shallow subtropical lake, Lake Griffin, Florida, USA. Hydrobiologia 753, 243–263 (2015). https://doi.org/10.1007/s10750-015-2210-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2210-8

Keywords

Navigation