Skip to main content
Log in

Diversity and distribution of benthic and hyporheic fauna in different stream types on an alpine glacial floodplain

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although processes involved in the relationship between hyporheic and benthic zone have been elucidated in recent years, the spatial and temporal dynamics of the invertebrate assemblages is unclear in alpine streams. A field study was carried out in a glacier-fed stream and in its main spring-fed tributary, in the Italian Alps. Benthic hyporheic connectivity was investigated by means of a pond net, a pump, and artificial substrates. The main determinant in structuring the community was the habitat (=benthic, hyporheic), accounting for 22% of the total faunal variation. A strong similarity was detected between the two streams in structure, function, and species seasonal variations of the hyporheos, that was, in both, more species rich than the benthos. In contrast, benthos was generally very different between the two streams, with a more pronounced turnover in the glacier-fed than in the spring-fed stream. Overall, the highly disturbed glacial system hosted a simplified benthos and hyporheos compared to the stable spring system, in agreement with the intermediate disturbance hypothesis. Our findings provided also evidences about the trophic-sink effect between benthos and hyporheos. Spatial connectivity that we highlighted might have a key role in the dispersal of invertebrates facing changes in habitats features due to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson, M. J., K. E. Ellingsen & B. H. McArdle, 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9: 683–693.

    Article  PubMed  Google Scholar 

  • APHA, 1992. Standard methods for the examination of water and wastewater, 18th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Baer, S. G., E. R. Siler, S. L. Eggert & J. B. Wallace, 2001. Colonization and production of macroinvertebrates on artificial substrata: upstream–downstream responses to a leaf litter exclusion manipulation. Freshwater Biology 46: 347–365.

    Article  Google Scholar 

  • Bo, T., M. Cucco, S. Fenoglio & G. Malacarne, 2006. Colonisation patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy. Hydrobiologia 568: 67–78.

    Article  Google Scholar 

  • Boulton, A. J., T. Datry, T. Kasahara, M. Mutz & J. A. Stanford, 2010. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society 29: 26–40.

    Article  Google Scholar 

  • Brown, L. E., A. M. Milner & D. M. Hannah, 2007. Groundwater influence on alpine stream ecosystems. Freshwater Biology 52: 878–890.

    Article  Google Scholar 

  • Bruno, M. C., B. Maiolini, M. Carolli & L. Silveri, 2009. Impact of hydropeaking on hyporheic invertebrates in an Alpine stream (Trentino, Italy). Annales de Limnologie/International Journal of Limnology 45: 157–170.

    Article  Google Scholar 

  • Bruno, M. C., E. Bottazzi & G. Rossetti, 2012. Downward, upstream or downstream? Assessment of meio and macrofaunal colonization patterns in a gravel-bed stream using artificial substrates. Annales de Limnologie/International Journal of Limnology 48: 371–381.

    Article  Google Scholar 

  • Brunke, M. & T. Gonser, 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37: 1–33.

    Article  Google Scholar 

  • Burgherr, P., J. V. Ward & C. T. Robinson, 2002. Seasonal variation in zoobenthos across habitat gradients in an alpine glacial floodplain (Val Roseg, Swiss Alps). Journal of the North American Benthological Society 21: 561–575.

    Article  Google Scholar 

  • Chazdon, R. L., A. Chao, R. K. Colwell, S.-Y. Lin, N. Norden, S. G. Letcher, D. B. Clark, B. Finegan & J. P. Arroyo, 2011. A novel statistical method for classifying habitat generalists and specialists. Ecology 92: 1332–1343.

    Article  PubMed  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1998. A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology 35: 523–531.

    Article  Google Scholar 

  • Connell, J. H., 1978. Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.

    Article  CAS  PubMed  Google Scholar 

  • Crossman, J., C. Bradley, A. M. Milner & G. Pinay, 2012. Influence of environmental instability of groundwater-fed streams on hyporheic fauna on a glacial floodplain, Denali National Park, Alaska. River Research and Applications 29: 548–559.

    Article  Google Scholar 

  • Datry, T., F. Malard & J. Gibert, 2005. Response of invertebrate assemblages to increased groundwater recharge rates in a phreatic aquifer. Journal of the North Benthological Society 24: 461–477.

    Article  Google Scholar 

  • Death, R. G. & M. J. Winterbourn, 1994. Environmental stability and community persistence: a multivariate perspective. Journal of the North American Benthological Society 13: 125–139.

    Article  Google Scholar 

  • Di Marzio, W. D., D. Castaldo, C. Pantani, A. Di Cioccio, T. Di Lorenzo, M. E. Sáenz & D. M. Galassi, 2009. Relative sensitivity of hyporheic copepods to chemicals. Bulletin of Environmental Contamination and Toxicology 82: 488–491.

    Article  PubMed  Google Scholar 

  • Dole-Olivier, M.-J., P. Marmonier & J. L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.

    Article  Google Scholar 

  • Elser, P., 2001. Assessing small-scale directional movements of benthic invertebrates in streams by using a multidirectional cage trap. Limnologica 31: 119–128.

    Article  Google Scholar 

  • Finn, D. S., K. Räsänen & C. T. Robinson, 2010. Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Global Change Biology 16: 3314–3326.

    Article  Google Scholar 

  • Fowler, R. T. & R. G. Death, 2001. The effect of environmental stability on hyporheic community structure. Hydrobiologia 445: 85–95.

    Article  Google Scholar 

  • Füreder, L., C. Vacha, K. Amprosi, S. Bühler, C. M. E. Hansen & C. Moritz, 2002. Reference conditions of alpine streams: physical habitat and ecology. Water, Air and Soil Pollution: Focus 2: 275–294.

    Article  Google Scholar 

  • Füreder, L., 2007. Life at the edge: habitat condition and bottom fauna of alpine running waters. International Review of Hydrobiology 92: 491–513.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.

    Article  Google Scholar 

  • Ilg, C. & E. Castella, 2006. Patterns of macroinvertebrate traits along three glacial stream continuums. Freshwater Biology 51: 840–853.

    Article  Google Scholar 

  • Jacobsen, D., A. M. Milner, L. E. Brown & O. Dangles, 2012. Biodiversity under threat in glacier-fed river systems. Nature Climate Change 2: 361–364.

    Article  Google Scholar 

  • Legendre, P. & E. D. Gallagher, 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271–280.

    Article  Google Scholar 

  • Lencioni, V. & B. Rossaro, 2005. Microdistribution of chironomids (Diptera: Chironomidae) in Alpine streams: an autoecological perspective. Hydrobiologia 533: 61–76.

    Article  Google Scholar 

  • Lencioni, V., B. Maiolini, R. Fochetti, M. Grasso, A. Boscaini & E. Dumnicka, 2006. Artificial substrate colonization by invertebrates in two high altitude Alpine streams. Verhandlugen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 29: 1866–1870.

    Google Scholar 

  • Lencioni, V., B. Maiolini, L. Marziali, S. Lek & B. Rossaro, 2007. Macroinvertebrate assemblages in glacial streams systems: a comparison of linear multivariate methods with artificial neural networks. Ecological modelling 203: 119–131.

    Article  Google Scholar 

  • Lencioni, V., L. Marziali & B. Rossaro, 2008. Hyporheic chironomids in alpine streams. Boletim of the Museu Municipal do Funchal (História Natural) 13: 127–132.

    Google Scholar 

  • Lencioni, V., L. Marziali & B. Rossaro, 2012. Chironomids as bioindicators of environmental quality in mountain springs. Freshwater Science 31: 525–541.

    Article  Google Scholar 

  • Loreau, M., 1998. Biodiversity and ecosystem functioning: mechanistic model. Proceedings of the National Academy of Sciences of the United States of America 95: 5632–5636.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Magurran, A. E., 2004. Measuring biological diversity. Blackwell Publishing, Oxford.

    Google Scholar 

  • Malard, F., J. V. Ward & C. T. Robinson, 2000. An expanded perspective of the hyporheic zone. Verhandlugen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 27: 431–437.

    CAS  Google Scholar 

  • Malard, F., M. Lafont, P. Burgherr & J. V. Ward, 2001. A comparison of longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial river. Arctic, Antarctic and Alpine Research 33: 457–466.

    Article  Google Scholar 

  • Malard, F., D. Galassi, M. Lafont, S. Dolédec & J. V. Ward, 2003. Longitudinal patterns of invertebrates in the hyporheic zone of a glacial river. Freshwater Biology 48: 1709–1725.

    Article  CAS  Google Scholar 

  • Mann, H. & D. Whitney, 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of mathematical Statistics 18: 50–60.

    Article  Google Scholar 

  • Marmonier, P., G. Archambaud, N. Belaidi, N. Bougon, P. Breil, E. Chauvet, C. Claret, J. Cornut, T. Datry, M.-J. Dole-Olivier, B. Dumont, N. Flipo, A. Foulquier, M. Gérino, A. Guilpart, F. Julien, C. Maazouzi, D. Martin, F. Mermillod-Blondin, B. Montuelle, P. Namour, S. Navel, D. Ombredane, T. Pelte, C. Piscart, M. Pusch, S. Stroffek, A. Robertson, J.-M. Sanchez-Pérez, S. Sauvage, A. Taleb, M. Wantzen & P. Vervier, 2012. The role of organisms in hyporheic processes: gaps in current knowledge, needs for future research and applications. Annales de Limnologie/International Journal of Limnology 48: 253–266.

    Article  Google Scholar 

  • Matthaei, C. D., U. Uehlinger, E. I. Meyer & A. Frutiger, 1996. Recolonization by benthic invertebrates after experimental disturbance in a Swiss prealpine river. Freshwater Biology 35: 233–248.

    Article  Google Scholar 

  • McDermott, M. J., A. L. Robertson, P. J. Shaw & A. M. Milner, 2010. The hyporheic assemblage of a recently formed stream following deglaciation in Glacier Bay, Alaska, USA. Canadian Journal of Fisheries and Aquatic Sciences 67: 304–313.

    Article  Google Scholar 

  • McGregor, G., G. E. Petts, A. M. Gurnell & A. M. Milner, 1995. Sensitivity of Alpine stream ecosystems to climatic change and human impacts. Aquatic Conservation 5: 233–247.

    Article  Google Scholar 

  • Milner, A. M., J. E. Brittain, E. Castella & G. E. Petts, 2001. Trends of macroinvertebrate community structure in glacier-fed rivers in relation to environmental conditions: a synthesis. Freshwater Biology 46: 1833–1847.

    Article  Google Scholar 

  • Minchin, P. R., 1987. An evaluation of relative robustness of techniques for ecological ordinations. Vegetatio 69: 89–107.

    Article  Google Scholar 

  • Moog, O., 2005. Fauna Aquatica Austriaca. Wasserwirtschafts kataster, Bundesministerium für Land- und Forstwirtschaft, Wien.

    Google Scholar 

  • Newbury, R. W., 1984. Hydrological determinants of aquatic insect habitats. In Resh, V. H. & D. M. Rosenberg (eds), The ecology of aquatic insects. Praeger, New York: 323–357.

    Google Scholar 

  • Peres-Neto, P., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2006. Functional diversity: back to basics and looking forward. Ecology Letters 9: 741–758.

    Article  PubMed  Google Scholar 

  • Pfankuch, D. J., 1975. Stream reach inventory and channel stability evaluation. U.S.D.A. Forest service, Northern Region, Intermountain Forest and range Experiment Station, Ogden.

    Google Scholar 

  • R Development Core Team, 2013. R: a language and environment for statistical computing. The R Foundation for Statistical Computing, Wien.

    Google Scholar 

  • Robertson, A. L. & A. M. Milner, 2006. The influence of stream age and environmental variables on structuring meiofaunal communities in recently deglaciated streams. Limnology and Oceanography 51: 1454–1465.

    Article  Google Scholar 

  • Rodriquez, S., E. Becares, F. Soto & R. Pacho, 1998. Colonization of aquatic macroinvertebrates in a high mountain stream using artificial substrates. Verhandlugen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 26: 1120–1124.

    Google Scholar 

  • Sambugar, B., 2005. La presenza di Troglochaetus beranecki Delachaux (Polychaeta, Nerillidae) in due grotte italiane. Studi Trentini di Scienze Naturali, Acta Biologica 8: 145–148.

    Google Scholar 

  • Schütz, C., M. Wallinger, R. Burger & L. Füreder, 2001. Effects of snow cover on the benthic fauna in a glacier-fed stream. Freshwater Biology 46: 1691–1704.

    Article  Google Scholar 

  • Silveri, L., J. M. Tierno de Figueroa & B. Maiolini, 2008. Feeding habits of Perlodidae (Plecoptera) in the hyporheic habitats of Alpine streams (Trentino-NE Italy). Entomologica Fennica 19: 176–183.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1988. The hyporheic habitat of river ecosystems. Nature 335: 64–66.

    Article  Google Scholar 

  • Tilman, D., 2001. Functional diversity. In Levin, S. A. (ed), Encyclopaedia of Biodiversity. Academic Press, San Diego: 109–120.

    Chapter  Google Scholar 

  • Tockner, K., M. S. Lorang & J. A. Stanford, 2010. River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts. River Research and Applications 26: 76–86.

    Article  Google Scholar 

  • Townsend, C. R., M. R. Scarsbrook & S. Doledec, 1997. Quantifying disturbance in streams: alternative measures of disturbance in relation to macroinvertebrate species traits and species richness. Journal of the North American Benthological Society 16: 531–544.

    Article  Google Scholar 

  • Ward, J. V., G. Bretschko, M. Brunke, D. Danielopol, J. Gibert, T. Gonser & A. J. Hildrew, 1998. The boundaries of river systems: the metazoan perspective. Freshwater Biology 40: 531–569.

    Article  Google Scholar 

  • Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1: 80–83.

    Article  Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Article  Google Scholar 

  • Williams, D. D. & N. E. Williams, 1993. The upstream/downstream movement paradox of lotic invertebrates: quantitative evidence from a Welsh mountain stream. Freshwater Biology 30: 199–218.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Autonomous Province of Trento (PAT), Italy, within the VETTA project, 2003–2006 (“Valenza ecologica dello zoobenthos di torrenti alpini in Ecological valency of zoobenthos in alpine streams”) and by the Italian Mountain Institute (IMONT, Rome) within the CRYOALP project, 2003–2005 (“Ruolo della criosfera alpina nell’equilibrio idrologico in Role of the alpine cryosphere in the water balance”). The authors thank the staff of the Science Museum of Trento for field and laboratory support, in particular Bruno Maiolini who had a crucial role in defining the experimental design. We are grateful to taxonomists who helped in species identification: Vezio Cottarelli (University of Viterbo, Italy), harpacticoids; Leonardo Latella (Natural History Museum of Verona, Italy), amphipods; Romolo Fochetti (University of Viterbo, Italy), stoneflies; Leo Rivosecchi (Rom, Italy) and Bruno Maiolini (present address E. Mach Research Foundation, San Michele all’Adige, Trento, Italy), blackflies. Finally, we wish to thank John E. Brittain (Natural History Museum, University of Oslo) for English revision and two anonymous reviewers for their useful comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Lencioni.

Additional information

Handling editor: Sonja Stendera

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lencioni, V., Spitale, D. Diversity and distribution of benthic and hyporheic fauna in different stream types on an alpine glacial floodplain. Hydrobiologia 751, 73–87 (2015). https://doi.org/10.1007/s10750-014-2172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2172-2

Keywords

Navigation