Skip to main content
Log in

Age and origin of Australian Bennelongia (Crustacea, Ostracoda)

  • TRENDS IN AQUATIC ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

South-western Australia holds an exceptional number of endemic taxa and has been recognized as a biodiversity hotspot at a global scale. We report a much higher diversity in the genus Bennelongia (Ostracoda) in Western than in eastern Australia. Using mitochondrial COI sequence data for phylogenies, relative age estimates, lineage-through-time plots, and reconstructions of ancestral distributions, we test four hypotheses that might explain the higher diversity and endemicity in Western Australia. (1) We find no evidence for ancient relictualism as most Bennelongia species are probably of Miocene age. (2) There are also no apparent links to vicariant events: speciation has mostly taken place in Western Australia and has been ongoing through the evolutionary history of Bennelongia. (3) Dispersal has apparently not negatively affected Western Australian Bennelongia endemicity although these ostracods produce drought-resistant eggs. We report one case of recent long distance dispersal in B. dedeckkeri with genetically identical populations occurring more than 2,000 km apart. (4) Since speciation has been ongoing, there is no evidence of recent explosive speciation through genetic isolation. The underlying mechanisms of Bennelongia speciation thus remain elusive, although speciation has mostly occurred during a period of increasing aridification of Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, S. S., Y. Yu, M. Pfosser & W. Wetschnig, 2012. Inferences of biogeographical histories within subfamily Hyacinthoideae using S-DIVA and Bayesian binary MCMC analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Annals of Botany 109: 95–107.

    PubMed Central  PubMed  Google Scholar 

  • Archer, M. & G. Clayton, 1984. Vertebrate Zoogeography and Evolution in Australasia (Animals in Space and Time). Hesperian Press, Marrickville, NSW.

    Google Scholar 

  • Barendse, W., 1984. Speciation in the genus Crinia (Anura: Myobatrachidae) in southern Australia: a phylogenetic analysis of allozyme data supporting endemic speciation in southwestern Australia. Evolution 38: 1238–1250.

    Google Scholar 

  • Bode, S. N. S., D. K. Lamatsch, M. J. F. Martins, O. Schmit, J. Vandekerkhove, F. Mezquita, T. Namiotko, G. Rossetti, I. Schön, R. K. Butlin & K. Martens, 2010. Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution 54: 542–552.

    CAS  PubMed  Google Scholar 

  • Bowler, J. M., 1976. Aridity in Australia: age, origins and expression in aeolian land forms and sediments. Earth Science Reviews 12: 279–310.

    Google Scholar 

  • Boxshall, G. & D. Defaye, 2008. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595: 195–207.

    Google Scholar 

  • Brochet, A., M. Gauthier-Clerc, M. Guillemain, H. Fritz, A. Waterkeyn, Á. Baltanás & A. Green, 2010. Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France). Hydrobiologia 637: 255–261.

    Google Scholar 

  • Bunn, S. E. & P. M. Davies, 1990. Why is the stream fauna of south-western Australia so impoverished? Hydrobiologia 194: 169–176.

    Google Scholar 

  • Byrne, M., D. K. Yeates, L. Joseph, M. Kearney, J. Bowler, M. A. J. Williams, S. Cooper, S. C. Donnellan, J. S. Keogh, R. Leys, J. Melville, J. Murphy, N. Porch & K.-H. Wyrwoll, 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17: 4398–4417.

    CAS  PubMed  Google Scholar 

  • Caceres, C. E. & D. A. Soluk, 2002. Blowing in the wind: a field test of overland dispersal and colonization by aquatic invertebrates. Oecologia 131: 402–408.

    Google Scholar 

  • Chung, P. P., R. V. Hyne, R. M. Mann & J. W. O. Ballard, 2013. The impact of historic isolation on the population biogeography of Melita plumulosa (Crustacea: Melitidae) in eastern Australia. Estuarine, Coastal and Shelf Science 129: 198–205.

    Google Scholar 

  • Costa, F. O., J. R. de Waard, J. Boutillier, S. Ratnasingham, R. T. Dooh, M. Hajibabaei & P. D. N. Hebert, 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–296.

    CAS  Google Scholar 

  • Crisp, M., L. Cook & D. Steane, 2004. Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society London B 359: 1551–1571.

    Google Scholar 

  • Darwin, C. R., 1859. The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray, London.

    Google Scholar 

  • De Deckker, P., 1977. The distribution of the “giant” ostracods (family: Cyprididae, Baird 1845) endemic to Australia. In Löffler, H. & D. Danielopol (eds), Aspects of Ecology and Zoogeography of Recent and Fossil Ostracods. Junk, The Hague: 285–294.

    Google Scholar 

  • De Deckker, P., 1981. Taxonomy and ecological notes of some ostracods from Australian inland waters. Transactions of the Royal Society of South Australia 105: 91–138.

    Google Scholar 

  • De Deckker, P., 1982. On Bennelongia tunta De Deckker sp. nov. Stereo Atlas of Ostracod Shells 9: 117–124.

    Google Scholar 

  • De Deckker, P., J. W. Magee & J. M. G. Shelley, 2011. Late quaternary palaeohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains. Journal of Arid Environments 75: 38–50.

    Google Scholar 

  • De Deckker, P. & K. G. McKenzie, 1981. Bennelongia, a new cypridid ostracod genus from Australasia. Transactions of the Royal Society of South Australia 105: 53–58.

    Google Scholar 

  • Drummond, A. J. & A. Rambaut, 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

    PubMed Central  PubMed  Google Scholar 

  • Dumont, H. J., S. Nandini & S. S. S. Sarma, 2002. Cyst ornamentation in aquatic invertebrates: a defence against egg predation. Hydrobiologia 486: 161–167.

    Google Scholar 

  • Edgar, R. C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eitam, A., L. Blaustein, K. Van Damme, H. J. Dumont & K. Martens, 2004. Crustacean species richness in temporary pools: relationships with habitat traits. Hydrobiologia 525: 125–130.

    Google Scholar 

  • Fontaneto, D., C. Q. Tang, U. Obertegger, F. Leasi & T. G. Barraclough, 2012. Different diversification rates between sexual and asexual organisms. Evolutionary Biology 39: 262–270.

    Google Scholar 

  • Frey, D. G., 1991. The species of Pleuroxus and three related genera (Anomopoda, Chydoridae) in southern Australia and New Zealand. Records of the Australian Museum 43: 291–372.

    Google Scholar 

  • Frey, D., 1998. Expanded description of Leberis aenigmatosa Smirnov (Anomopoda: Chydoridae): a further indication of the biological isolation between western and eastern Australia. Hydrobiologia 367: 31–42.

    Google Scholar 

  • Gibson, N., D. J. Coates & K. R. Thiele, 2007. Taxonomic research and and the conservation status of flora in the Yilgarn BIF ranges. Nuytsia 17: 1–12.

    Google Scholar 

  • Gibson, N., C. Yates & R. Dillon, 2010. Plant communities of the ironstone ranges of south Western Australia: hotspots for plant diversity and mineral deposits. Biodiversity and Conservation 19: 3951–3962.

    Google Scholar 

  • Graham, T. B. & D. Wirth, 2008. Dispersal of large branchiopod cysts: potential movement by wind from potholes on the Colorado Plateau. Hydrobiologia 600: 17–27.

    Google Scholar 

  • Green, A. J., K. M. Jenkins, D. Bell, P. J. Morris & R. T. Kingsford, 2008. The potential role of waterbirds in dispersing invertebrates and plants in arid Australia. Freshwater Biology 53: 380–392.

    Google Scholar 

  • Green, A. J., M. I. Sanchez, F. Amat, J. Figuerola, F. Hontoria, O. Ruiz & F. Hortas, 2005. Dispersal of invasive and native brine shrimps Artemia (Anostraca) via waterbirds. Limnology and Oceanography 50: 737–742.

    Google Scholar 

  • Guindon, S., J. F. Dufayard, V. Lefort, M. Anisimova, W. Hordijk & O. Gascuel, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.

    CAS  PubMed  Google Scholar 

  • Guzik, M. T., M. A. Adams, N. P. Murphy, S. J. B. Cooper & A. D. Austin, 2012. Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes). PLoS One 7: e37642.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hairston Jr, N. G., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41: 1087–1092.

    Google Scholar 

  • Halse, S. A. & J. M. McRae, 2004. New genera and species of giant ostracods (Crustacea: Cyprididae) from Australia. Hydrobiologia 524: 1–52.

    Google Scholar 

  • Halse, S. A., G. B. Pearson, C. Hassell, P. Collins, M. D. Scanlon & C. D. T. Minton, 2005. Mandora Marsh, north-western Australia, an arid-zone wetland maintaining continental populations of waterbirds. Emu 105: 115–125.

    Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9.

    Google Scholar 

  • Hebert, P. & C. Wilson, 2000. Diversity of the genus Daphniopsis in the saline waters of Australia. Canadian Journal of Zoology 78: 794–808.

    Google Scholar 

  • Ho, S. Y. W. & M. J. Philipps, 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Systematic Biology 58: 367–380.

    PubMed  Google Scholar 

  • Hopper, S. D., 1979. Biogeographical rates of speciation in the southwest Australian flora. Annual Review of Ecology and Systematics 10: 399–422.

    Google Scholar 

  • Hopper, S. D. & P. Gioia, 2004. The Southwest Australian floristic region: evolution and conservation of a global hotspot of diversity. Annual Review of Ecology and Systematics 35: 623–650.

    Google Scholar 

  • Horne, D. J. & R. J. Smith, 2004. First British record of Potamocypris humilis (Sars, 1924), a freshwater ostracod with a disjunct distribution in Europe and southern Africa. Bollettino della Societa Paleontologica Italiana 43: 297–306.

    Google Scholar 

  • Huelsenbeck, J., B. Larget & D. Swofford, 2000. A compound Poisson process for relaxing the molecular clock. Genetics 154: 1879–1892.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kass, R. E. & A. E. Raftery, 1995. Bayes factors. Journal of the Americal Statistical Association 90: 773–795.

    Google Scholar 

  • Kieneke, A., P. M. Marti, N. Arbizu & D. Fontaneto, 2012. Spatially structured populations with a low level of cryptic diversity in European marine Gastrotricha. Molecular Ecology 21: 1239–1254.

    PubMed  Google Scholar 

  • King, J. L., M. A. Simovich & R. C. Brusc, 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328: 85–116.

    Google Scholar 

  • Knowles, L. L., 2000. Tests of pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western north America. Evolution 54: 1337–1348.

    CAS  PubMed  Google Scholar 

  • Knowlton, N. & L. A. Weigt, 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London, Series B, Biological Sciences 265: 2257–2263.

    Google Scholar 

  • Lemey, P., M. Salemi & A.-M. Vandamme, 2009. The Phylogenetic Handbook, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  • Maly, E. J. & I. A. E. Bayly, 1991. Factors influencing biogeographic patterns of Australasian centropagid copepods. Journal of Biogeography 18: 455–461.

    Google Scholar 

  • Martens, K., 1998. Sex and Parthenogenesis: Evolutionary Ecology of Reproductive Modes in Non-marine Ostracods. Backhuys, Leiden.

    Google Scholar 

  • Martens, K., I. Schön, C. Meisch & D. Horne, 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185–193.

    Google Scholar 

  • Martens, K., S. Halse & I. Schön, 2012. Nine new species of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of a new subfamily. European Journal of Taxonomy 8: 1–56.

    Google Scholar 

  • Martens, K., S. Halse & I. Schön, 2013. On the Bennelongia barangaroo lineage (Crustacea, Ostracoda) in Western Australia, with the description of seven new species. European Journal of Taxonomy 66: 1–59.

    Google Scholar 

  • Martens, K., S. Halse & I. Schön, 2015. On the Bennelongia nimala and B. triangulata lineages (Crustacea, Ostracoda) in Western Australia, with the description of six new species. European Journal of Taxonomy 111: 1–36.

  • Martin, H. A., 2006. Cenozoic climatic changes and the development of the arid vegetation of Australia. Journal of Arid Environments 66: 533–563.

    Google Scholar 

  • Maynard Smith, J., 1998. Evolutionary Genetics, 2nd ed. Oxford University Press, Oxford.

    Google Scholar 

  • McGowran, B., G. R. Holdgate, Q. Li & S. J. Gallagher, 2004. Cenozoic stratigraphic succession in southeastern Australia. Australian Journal of Earth Sciences 51: 459–496.

    Google Scholar 

  • McTainsh, G., Y. C. Chan, H. McGowan, J. Leys & K. Tews, 2005. The 23rd October 2002 dust storm in eastern Australia: characteristics and meteorological conditions. Atmospheric Environments 39: 1227–1236.

    CAS  Google Scholar 

  • Moir, M. L., K. E. C. Brennan & M. S. Harvey, 2009. Diversity, endemism and species turnover of millipedes within the south-western Australian global biodiversity hotspot. Journal of Biogeography 36: 1958–1971.

    Google Scholar 

  • Morgan, M. J., J. D. Roberts & J. S. Keogh, 2007. Molecular phylogenetic dating supports an ancient endemic speciation model in Australia’s biodiversity hotspot. Molecular Phylogenetics and Evolution 44: 371–385.

    CAS  PubMed  Google Scholar 

  • Murphy, N. P., M. F. Breed, M. T. Guzik, S. J. B. Cooper & A. D. A. Murphy, 2012. Trapped in desert springs: phylogeography of Australian desert spring snails. Journal of Biogeography 39: 1573–1582.

    Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    CAS  PubMed  Google Scholar 

  • Nix, H., 1982. Environmental determinants of biogeography and evolution in Terra Australis. In Barker, W. R. & P. J. M. Greenslade (eds), Evolution of the Flora and Fauna of Arid Australia. Peacock Publications, Frewville.

    Google Scholar 

  • Paradis, E., J. Claude & K. Strimmer, 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

    CAS  PubMed  Google Scholar 

  • Pepper, M. P., P. Doughty, M. N. Hutchinson & J. S. Keogh, 2011. Ancient drainages divide cryptic species in Australia’s arid zone: morphological and multi-gene evidence for four new species of Beaked Geckos (Rhynchoedura). Molecular Phylogenetics and Evolution 61: 810–822.

    PubMed  Google Scholar 

  • Pinceel, T., L. Brendonck, M. H. D. Larmuseau, M. P. M. Vanholve & B. V. Timms, 2013. Environmental change as a driver of diversification in temporary aquatic habitats: does the genetic structure of extant fairy shrimp populations reflect historic aridification? Freshwater Biology 58: 1556–1572.

    Google Scholar 

  • Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.

    CAS  PubMed  Google Scholar 

  • Proctor, V. W., 1964. Viability of crustacean eggs recovered from ducks. Ecology 45: 656–658.

    Google Scholar 

  • Pybus, O. G. & P. H. Harvey, 2000. Testing macro-evolutionary models using incomplete molecular phylogenies. Proceedings of the Royal Society of London, Series B, Biological Sciences 267: 2267–2272.

    CAS  Google Scholar 

  • Rabosky, D. L., 2006. LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evolutionary Bioinformatics Online 2: 257–260.

    CAS  Google Scholar 

  • Radke, L. C., S. Juggins, S. A. Halse, P. D. De Deckker & T. Finston, 2003. Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Marine and Freshwater Research 54: 895–912.

    CAS  Google Scholar 

  • Remigio, E. A., P. D. N. Hebert & A. Savage, 2001. Phylogenetic relationships and remarkable radiation in Parartemia (Crustacea: Anostraca), the endemic brine shrimp of Australia: evidence from mitochondrial DNA sequences. Biological Journal of the Linnean Society 74: 59–71.

    Google Scholar 

  • Rix, M. G., D. L. Edwards, M. Byrne, M. S. Harvey, L. Joseph & J. D. Roberts, 2014. Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews. doi:10.1111/brv.12132.

    PubMed  Google Scholar 

  • Roberts, J. D. & L. R. Maxson, 1985. Tertiary speciation models in Australian anurans: molecular data challenge pleistocene scenario. Evolution 39: 325–334.

    Google Scholar 

  • Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck, 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542.

    PubMed Central  PubMed  Google Scholar 

  • Roshier, D. A., N. I. Klomp & M. Asmus, 2006. Movements of a nomadic waterfowl, Grey Teal Anas gracilis, across inland Australia—results from satellite telemetry spanning fifteen months. Ardea 94: 461–475.

    Google Scholar 

  • Roshier, D. A., P. H. Whetton, R. J. Allan & A. I. Robertson, 2001. Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate. Australian Ecology 26: 371–384.

    Google Scholar 

  • Sánchez, B. & D. G. Angeler, 2007. Can fairy shrimps (Crustacea: Anostraca) structure zooplankton communities in temporary ponds? Marine and Freshwater Research 58: 827–834.

    Google Scholar 

  • Sars, G. O., 1896. On some freshwater Entomostraca from the neighbourhood of Sydney, partly raised from dried mud. Arkiv för matematik og naturvidenskab 18: 1–81.

    Google Scholar 

  • Schön, I., 2007. Did Pleistocene glaciations shape genetic patterns of European ostracods? A phylogeograpic analysis of two species with asexual reproduction. Hydrobiologia 575: 30–50.

    Google Scholar 

  • Schön, I., K. Martens & S. A. Halse, 2010. Genetic diversity in Australian ancient asexual Vestalenula (Ostracoda, Darwinulidae): little variability down under. Hydrobiologia 641: 59–70.

    Google Scholar 

  • Schön, I. & K. Martens, 2012. Molecular analyses of ostracod flocks from Lake Baikal and Lake Tanganyika. Hydrobiologia 682: 91–110.

    Google Scholar 

  • Schön, I., R. Pinto, S. Halse, A. Smith, K. Martens & C. W. Jr Birky, 2012. Cryptic diversity in putative ancient asexual darwinulids (Crustacea: Ostracoda). PLoS One 7: e39844.

    PubMed Central  PubMed  Google Scholar 

  • Schubart, C. D., R. Diesel & S. B. Hedges, 1998. Rapid evolution to terrestrial life in Jamaican crabs. Nature 393: 363–365.

    CAS  Google Scholar 

  • Schwentner, M., B. V. Timms & S. Richter, 2013. Flying with the birds? Recent large-area dispersal of four Australian Limnadopsis species (Crustacea: Branchiopoda: Spinicaudata). Ecology and Evolution 2: 1605–1626.

    Google Scholar 

  • Schwentner, M., B. Timms & S. Richter, 2014. Evolutionary systematics of the Australian Eocyzicusfauna (Crustacea: Branchiopoda: Spinicaudata) reveals hidden diversity and phylogeographic structure. Journal of Zoological Systematic and Evolutionary Research 52: 15–31.

    Google Scholar 

  • Shearn, R., A. Koenders, S. A. Halse, I. Schön & K. Martens, 2012. A review of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) species from eastern Australia with the description of three new species. European Journal of Taxonomy 25: 1–35.

    Google Scholar 

  • Singh, G., 1982. Environmental upheaval: vegetation of Australasia during the Quarternary. In Smith, J. M. B. (Ed.), A History of Australasian Vegetation. McGraw Hill, Sydney: 90–108.

    Google Scholar 

  • Skinner, A., M. N. Hutchinson & M. S. Y. Lee, 2013. Phylogeny and divergence times of Australian Sphenomorphus group skinks (Scincidae, Squamata). Molecular Phylogenetics and Evolution 69: 906–918.

    PubMed  Google Scholar 

  • Stelbrink, B., C. Albrecht, R. Hall & T. von Rintelen, 2012. The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace’s “anomalous island”? Evolution 66: 2252–2271.

    PubMed  Google Scholar 

  • Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tang, C. Q., U. Obertegger, D. Fontaneto & T. G. Barraclough, 2014. Sexual species are separated by larger genetic gaps than asexual species in rotifers. Evolution. doi:10.1111/evo.12483.

  • Timms, B., 1982. Coastal dune waterbodies of north-eastern New South Wales. Marine and Freshwater Research 33: 203–222.

    CAS  Google Scholar 

  • Timms, B., 1986. Reconnaissance limnology of some coastal dune lakes of Cape York Peninsula, Queensland. Marine and Freshwater Research 37: 167–176.

    Google Scholar 

  • Timms, B., 1987. Limnology of Lake Buchanan, a tropical saline lake, and associated pools, of North Queensland. Marine and Freshwater Research 38: 877–884.

    CAS  Google Scholar 

  • Timms, B. V., 1993. Saline lakes of the Paroo, inland New South Wales, Australia. In Hurlbert, S. (Ed.), Saline Lakes. Springer, Dordrecht.

    Google Scholar 

  • Timms, B. V., 1997. Study of coastal freshwater lakes in southern New South Wales. Marine and Freshwater Research 48: 249–256.

    CAS  Google Scholar 

  • Timms, B. V., 1998. Further studies on the saline lakes of the eastern Paroo, inland New South Wales, Australia. Hydrobiologia 381: 31–42.

    Google Scholar 

  • Timms, B. V., 2002. The fairy shrimp genus Branchinella Sayce (Crustacea: Anostraca: Thamnocephalidae) in Western Australia, including a description of four new species. Hydrobiologia 486: 71–89.

    Google Scholar 

  • Timms, B. V., 2008. The ecology of episodic saline lakes of inland eastern Australia, as exemplified by a ten year study of the Rockwell-Wombah lakes of the Paroo. Proceedings of the Linnean Society of New South Wales 129: 1–16.

    Google Scholar 

  • Toon, A., J. A. Austin, G. Dolman, L. Pedler & L. Joseph, 2012. Evolution of arid zone birds in Australia: Leapfrog distribution patterns and mesic-arid connections in quail-thrush (Cinclosoma, Cinclosomatidae). Molecular Phylogenetics and Evolution 62: 286–295.

    PubMed  Google Scholar 

  • Unmack, P. J., 2001. Biogeography of Australian freshwater fish. Journal of Biogeography 28: 1053–1089.

    Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008a. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.

    Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, T. Nhiwatiwa, T. O. M. Pinceel, E. Spooren, A. Geerts, B. Clegg & L. Brendonck, 2011. Passive external transport of freshwater invertebrates by elephant and other mud-wallowing mammals in an African savannah habitat. Freshwater Biology 56: 1606–1619.

    Google Scholar 

  • Vanschoenwinkel, B., A. Waterkeyn, T. Vandecaetsbeek, O. Pineau, P. Grillas & L. Brendonck, 2008b. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 2264–2273.

    Google Scholar 

  • Wilke, T., R. Schultheiß & C. Albrecht, 2009. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. American Malacological Bulletin 27: 25–45.

    Google Scholar 

  • Wilke, T., R. Schultheiß, C. Albrecht, N. Bornmann, S. Trajanovski & T. Kevrekidis, 2010. Native Dreissena freshwater mussels in the Balkans: in and out of ancient lakes. Biogeosciences Discussions 7: 4425–4461.

    Google Scholar 

  • Xia, X., 2013. DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30: 1720–1728.sl.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xia, X. & P. Lemey, 2009. Assessing substitution saturation with DAMBE. In Lemey, P., M. Salemi & A.-M. Vandamme (eds), The Phylogenetic Handbook: A Practical Approach to DNA and Protein Phylogeny, 2nd ed. Cambridge University Press, Cambridge: 615–630.

    Google Scholar 

  • Xia, X., Z. Xie, M. Salemi, L. Chen & Y. Wang, 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7.

    CAS  PubMed  Google Scholar 

  • Yan, Y., A. J. Harris & H. Xingjin, 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56: 848–850.

    Google Scholar 

Download references

Acknowledgments

This research was funded by an ABRS grant (nr RF211-33: ‘Biodiversity and taxonomy of Ostracoda (Crustacea) from temporary water bodies of inland Western Australia’), an Edith Cowan University Industry Collaboration grant, and by the Centre for Ecosystem Management, Edith Cowan University. RS and AK acknowledge land owners who allowed sampling of sites on Lake Dunn station, Hazelmere Station, Kilcowera Station, and at Lake Powlathanga. Brian V. Timms (Newcastle, Australia) collected some of the material included in the present paper. Pierre Horwitz (Edith Cowan University) and personnel at Bennelongia Pty Ltd are thanked for logistical support and provision of field and lab materials. Sequencing was performed at the Australian Genome Research Facility (Perth) and at the RBINSc with assistance from Zohra Elouaazizi (RBINSc, Brussels, Belgium). KM & IS acknowledge the Western Australian Department of Parks and Wildlife (2006) and Bennelongia Pty Ltd (2008, 2009, 2010) for financial support during several scientific stays in Perth, as well as the financial contribution of the FWO Vlaanderen (Fund for Scientific Research, Flanders) in the form of travel grants in 2010 (V4.172.10 N & V4.173.10 N) and the projects 1.5.172.09 (Krediet aan Navorsers) and G.0118.03 N (projectonderzoek). The authors thank three reviewers for their valuable comments that helped improve a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa Schön.

Additional information

Isa Schön and Rylan Shearn are the co-first authors.

Guest editor: Koen Martens / Emerging Trends in Aquatic Ecology

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schön, I., Shearn, R., Martens, K. et al. Age and origin of Australian Bennelongia (Crustacea, Ostracoda). Hydrobiologia 750, 125–146 (2015). https://doi.org/10.1007/s10750-014-2159-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2159-z

Keywords

Navigation