Skip to main content

Advertisement

Log in

Hearing thresholds of harbor seals (Phoca vitulina) for playbacks of seal scarer signals, and effects of the signals on behavior

  • OFFSHORE WIND FARM IMPACTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Acoustic mitigation devices (AMDs) are used to deter marine mammals from construction sites to prevent hearing injury by offshore pile-driving noise. In order to quantify the distance at which AMDs designed as ‘seal scarers’ are detected by seals, the 50% hearing thresholds for playbacks of their sounds were determined. The broadband hearing threshold sound pressure levels (SPLs) of two harbor seals for signals from two AMDs were similar (63–69 dB re 1 μPa, rms). Effects of the AMDs on the seals’ behavior were quantified at three SPLs: one which just did not cause behavioral changes, one which caused one of the seals to haul out occasionally, and one which caused one of the seals to haul out more than 10% of the time. The corresponding mean received SPLs were, respectively, Ace Aquatec: 109, 124, and 134 dB re 1 μPa, rms; Lofitech: 128, 133, and 138 dB re 1 μPa, rms. Thus at similar received levels, the Ace Aquatec seems more effective than the Lofitech in deterring harbor seals. Detection and behavioral response distances of the AMD sounds for harbor seals at sea can be estimated by combining the results from the present study with data on AMD source levels, propagation conditions, and background noise levels near construction sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Deecke, V. B., P. J. B. Slater & J. K. B. Ford, 2002. Selective habituation shapes acoustic predator recognition in harbour seals. Nature 420: 171–173.

    Article  CAS  PubMed  Google Scholar 

  • Fjälling, A., M. Wahlberg & H. Westerberg, 2006. Acoustic Harassment Devices (AHD) reduce seal interaction in the Baltic salmon trap net fishery. ICES Journal of Marine Sciences 63: 1751–1758.

    Article  Google Scholar 

  • Götz, T. & V. M. Janik, 2010. Aversiveness of sounds in phocid seals: psycho-physiological factors, learning processes and motivation. The Journal of Experimental Biology 213: 1536–1548.

    Article  PubMed  Google Scholar 

  • Harris, R. E., G. W. Miller & W. J. Richardson, 2001. Seal responses to airgun sounds during summer seismic surveys in the Alaskan Beaufort Sea. Marine Mammal Science 17: 795–812.

    Article  Google Scholar 

  • Houser, D. S. & J. J. Finneran, 2006. Variation in the hearing sensitivity of a dolphin population determined through the use of evoked potential audiometry. The Journal of the Acoustical Society of America. 120: 4090–4099.

    Article  PubMed  Google Scholar 

  • Jacobs, S. R. & J. M. Terhune, 2002. The effectiveness of acoustic harassment devices in the Bay of Fundy, Canada: seal reactions and noise exposure model. Aquatic Mammals 28: 147–158.

    Google Scholar 

  • Kastak, D. & R. J. Schusterman, 1998. Low-frequency amphibious hearing in pinnipeds: methods, measurements, noise, and ecology. Journal of the Acoustical Society of America. 103: 2216–2228.

    Article  CAS  PubMed  Google Scholar 

  • Kastelein, R. A., S. van der Heul, W. C. Verboom, R. J. V. Triesscheijn & N. V. Jennings, 2006a. The influence of underwater data transmission sounds on the displacement of harbour seals (Phoca vitulina) in a pool. Marine Environmental Research 61: 19–39.

    Article  CAS  PubMed  Google Scholar 

  • Kastelein, R. A., S. van der Heul, J. M. Terhune, W. C. Verboom & R. J. V. Triesscheijn, 2006b. Deterring effects of 8–45 kHz tone pulses on harbor seals (Phoca vitulina) in a large pool. Marine Environmental Research 62: 356–373.

    Article  CAS  PubMed  Google Scholar 

  • Kastelein, R. A., P. J. Wensveen, L. Hoek, W. C. Verboom & J. M. Terhune, 2009a. Underwater detection of tonal signals between 0.125 and 100 kHz by harbor seals (Phoca vitulina). Journal of the acoustical Society of America. 125: 1222–1229.

    Article  PubMed  Google Scholar 

  • Kastelein, R. A., P. J. Wensveen, L. Hoek & J. M. Terhune, 2009b. Underwater detection of narrow noise bands between 0.2 and 80 kHz by harbor seals (Phoca vitulina). Journal of the Acoustical Society of America 126: 476–483.

    Article  PubMed  Google Scholar 

  • Kastelein, R. A., L. Hoek, P. J. Wensveen, J. M. Terhune & C. A. F. de Jong, 2010. The effect of signal duration on the underwater hearing thresholds of two harbor seals (Phoca vitulina) for single tonal signals between 0.2 and 40 kHz. Journal of the Acoustical Society of America 127: 1135–1145.

    Article  PubMed  Google Scholar 

  • Kastelein, R. A., P. J. Wensveen, J. M. Terhune & C. A. F. de Jong, 2011. Near-threshold equal-loudness contours for harbor seals (Phoca vitulina) derived from reaction times during underwater audiometry: a preliminary study. Journal of the Acoustical Society of America. 129: 488–495.

    Article  PubMed  Google Scholar 

  • Kastelein, R. A., R. Gransier, L. Hoek, A. Macleod & J. M. Terhune, 2012. Hearing threshold shifts and recovery in harbor seals (Phoca vitulina) after octave-band noise exposure at 4 kHz. Journal of the Acoustical Society of America. 132: 2745–2761.

    Article  PubMed  Google Scholar 

  • Kastelein, R. A., L. Hoek, R. Gransier, C. A. F. de Jong, J. M. Terhune & N. Jennings, 2014. Hearing thresholds of a harbor porpoise (Phocoena phocoena) for playbacks of seal scarer signals, and effects of the signals on behavior. Hydrobiologia. doi:10.1007/s10750-014-2035-x.

    Google Scholar 

  • Levitt, H., 1971. Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49: 467–477.

    Article  PubMed  Google Scholar 

  • Madsen, P. T., 2005. Marine mammals and noise: problems with root mean square sound pressure levels for transients. Journal of the Acoustical Society of America 117: 3952–3957.

    Article  CAS  PubMed  Google Scholar 

  • Møhl, B., 1968. Auditory sensitivity of the common seal in air and water. Journal of Auditory Research 8: 27–38.

    Google Scholar 

  • Nedwell, J. R., A. G. Brooker, S. A. H. Bryant, & R. J. Barham 2010. Measurements of underwater noise generated by acoustic mitigation devices. Subacoustech Environmental Report No. E238R0122 to COWRIE. ISBN: 978-0-9565843-2-8.

  • Ridgway, S. H. & D. A. Carder, 1993. High-frequency hearing loss in old (25+ years old) male dolphins. Journal of the Acoustical Society of America. 94: 1830.

    Article  Google Scholar 

  • Ridgway, S. H. & D. A. Carder, 1997. Hearing deficits measured in some Tursiops truncatus, and discovery of a deaf/mute dolphin. Journal of the Acoustical Society of America 101: 590–594.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, D. E. & C. S. Watson, 1973. Psychophysical methods in modern Psychoacoustics. In Tobias, J. V. (ed.), Foundations of Modern Auditory Theory, Vol. 2. Academic, New York: 99–131.

    Google Scholar 

  • Schusterman, R. J., B. Southall, D. Kastak & C. Reichmuth Kastak, 2002. Age-related hearing loss in sea lions and their scientists. Journal of the Acoustical Society of America 111: 2342–2343.

    Article  Google Scholar 

  • Shapiro, A. D., J. Tougaard, P. B. Jørgensen, L. A. Kyhn, J. D. Balle, C. Bernardez, A. Fjälling, J. Karlsen & M. Wahlberg, 2009. Transmission loss patterns from acoustic harassment and deterrent devices do not always follow geometrical spreading predictions. Marine Mammal Science 25: 53–67.

    Article  Google Scholar 

  • Southall, B. L., R. J. Schusterman, D. Kastak & C. Reichmuth Kastak, 2005. Reliability of underwater hearing thresholds in pinnipeds. Acoustic Research Letters Online 6: 243–249.

    Article  Google Scholar 

  • Taylor, V.J., D.W. Johnston & W.C. Verboom, 1997. Acoustic harassment device (AHD) use in the aquaculture industry and implications for marine mammals. Proceedings of the Symposium on Underwater Bio-sonar Systems and Bioacoustics Loughborough, UK.: 267–276.

  • Terhune, J. M., 1988. Detection thresholds of a harbor seal to repeated underwater high-frequency, short duration sinusoidal pulses. Canadian Journal of Zoology. 66: 1578–1582.

    Article  Google Scholar 

  • Turnbull, S. D. & J. M. Terhune, 1990. White noise and pure tone masking of pure tone thresholds of a harbour seal listening in air and underwater. Canadian Journal of Zoology 68: 2090–2097.

    Article  Google Scholar 

  • Thomas, J. A., R. A. Kastelein & F. T. Awbrey, 1990. Behavior and blood catecholamines of captive Belugas during playbacks of noise from an oil drilling platform. Zoo Biology 9: 393–402.

    Article  Google Scholar 

  • Yurk, H. & A. W. Trites, 2000. Experimental attempts to reduce predation by harbor seals, Phoca vitulina, on out-migrating juvenile salmonids. Transactions of the American Fisheries Society 129: 1360–1366.

    Article  Google Scholar 

  • Zar, J. H., 1984. Biostatistical Analysis, 2nd ed. Prentice-Hall International, Inc., Englewood Cliffs.

    Google Scholar 

Download references

Acknowledgments

We thank research assistant Martijn Dieleman, students Stefan van Baest, Amy Verhoeven, Loek van der Drift and Tess van der Drift, and volunteers Brigitte Slingerland, Jesse Dijkhuizen and Saskia Roose for their help in collecting the data, and Rob Triesscheijn for making the figures. We thank Veenhuis Medical Audio (Marco Veenhuis and Herman Walstra) for donating and modifying the audiometer, and Arie Smink for the design, construction, and maintenance of the electronic equipment. We thank Bert Meijering (Topsy Baits) for providing space for the SEAMARCO Research Institute. Erwin Jansen (TNO) conducted the acoustic calibration measurements. We also thank Willem Verboom (JunoBioacoustics), and two anonymous reviewers for their valuable constructive comments on this manuscript. Funding for this project was obtained from Collaborative Offshore Windfarm Research into the Environment (COWRIE, UK, contract AMD-08-09). We thank Eleanor Partridge (NatureBureau) for her guidance on behalf of the commissioner. We thank Ecomare for making the harbor seals available for this project and Subacoustic Ltd for providing the recordings of the AMD sounds. The seals’ training and testing were conducted under authorization of the Netherlands Ministry of Agriculture, Nature and Food Quality, Department of Nature Management, with Endangered Species Permit FF/75A/2009/039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald A. Kastelein.

Additional information

Guest editors: Steven Degraer, Jennifer Dannheim, Andrew B. Gill, Han Lindeboom & Dan Wilhelmsson / Environmental impacts of offshore wind farms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kastelein, R.A., Helder-Hoek, L., Gransier, R. et al. Hearing thresholds of harbor seals (Phoca vitulina) for playbacks of seal scarer signals, and effects of the signals on behavior. Hydrobiologia 756, 75–88 (2015). https://doi.org/10.1007/s10750-014-2152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2152-6

Keywords

Navigation