Skip to main content

Advertisement

Log in

Comparison of manual and semi-automatic underwater imagery analyses for monitoring of benthic hard-bottom organisms at offshore renewable energy installations

  • OFFSHORE WIND FARM IMPACTS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The construction of new offshore wind farms is one of the strategies to fulfill growing demands for “green” renewable energy. Underwater imagery is an important tool in the environmental monitoring of offshore renewable energy installations, especially in rocky benthic environment where traditional techniques are not applicable. Underwater video from the high energy Norwegian Sea coast was used for this study. Traditional manual point-based benthic cover estimations from selected frames were tested against a semi-automatic approach which involved making mosaic images from underwater videos. The study demonstrates that results of manual and semi-automatic benthic cover estimations are similar, although the manual analysis has a much larger spread in the variability of the data with many outliers due to the limited amount of points used in the analysis. Although the number of benthic features that could be extracted by computer using color is fewer than those that can be detected with the human eye, the described semi-automatic method is less biased and less costly in terms of qualified staff. Implementation of the semi-automatic method does not require any programming skills and has the ability to quickly and simply process larger amount of underwater imagery which would be of decisive advantage to the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baatz, M. & A. Schäpe, 2000. Multiresolution segmentation—an optimization approach for high quality multi-scale image segmentation. In Strobl, J., T. Blaschke & G. Griesebner (eds), Angewandte Geographische Informations verarbeitung XII. Wichmann-Verlag, Heidelberg: 12–23.

    Google Scholar 

  • Bergström, L., L. Kautsky, T. Malm, R. Rosenberg, M. Wahlberg, N. Åstrand capetillo & D. Wilhelmsson, 2014. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environmental Research Letters 9(3): 034012.

    Article  Google Scholar 

  • Beuchel, F., R. Primicerio, O. J. Lønne, B. Gulliksen & S.-R. Birkely, 2010. Counting and measuring epibenthic organisms from digital photographs: a semiautomated approach. Limnology and Oceanography: Methods 8(2010): 229–240.

    Google Scholar 

  • Burnett, C. & T. Blaschke, 2003. A multi-scale segmentation/object relationship modeling methodology for landscape analysis. Landscape Theory and Landscape Modeling 168: 233–249.

    Google Scholar 

  • Bevilacqua, S., A. Fraschetti, L. Musco & A. Terlizzi, 2009. Taxonomic sufficiency in the detection of natural and human-induced changes in marine assemblages: a comparison of habitats and taxonomic groups. Marine Pollution Bulletin 58: 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  • Carleton, J. H. & T. J. Done, 1995. Quantitative video sampling of coral reef benthos: large-scale application. Coral Reefs 14: 35–46.

    Article  Google Scholar 

  • Dalghren, T. G., M.-L. Schläppy, A. Šaškov, M. H. Andersson, Y. Rzhanov & I. Fer, 2014. Assessing the impact of windfarms in subtidal, exposed marine areas. In Shields, M. A. & A. I. L. Payne (eds), Marine Renewable Energy Technology and Environmental Interactions, Humanity and the Sea. Springer Science + Business Media, Dordrecht: 39–48.

    Chapter  Google Scholar 

  • Defeo, O. & D. Lercari, 2004. Testing taxonomic resolution levels for ecological monitoring in sandy beach macrobenthic communities. Aquatic Conservation Marine and Freshwater Ecosystems 14: 65–74.

    Article  Google Scholar 

  • Duntley, S. Q., 1963. Light in the sea. Journal of Optical Society of America 53: 214–233.

    Article  Google Scholar 

  • Dethier, M. N., S. Elizabeth, T. S. Graham, S. Cohen & L. M. Tear, 1993. Visual versus random-point percent cover estimations: “objective” is not always better. Marine Ecology Progress Series 96: 93–100.

    Article  Google Scholar 

  • Fonseca, A. & I. M. Raimundo Jr, 2007. A simple method for water discrimination based on an light emitting diode (LED) photometer. Analytica Chimica Acta 596: 66–72.

    Article  CAS  PubMed  Google Scholar 

  • Foster, M. S., 1991. Point versus photo quadrat estimates of the cover of sessile marine organisms. Journal of Experimental Marine Biology and Ecology 146: 193–203.

    Article  Google Scholar 

  • Fu, L.-M., W.-J. Ju, C.-C. Liu, R.-J. Yang & T.-N. Wange, 2014. Integrated microfluidic array chip and LED photometer system for sulfur dioxide and methanol concentration detection. Chemical Engineering Journal 243: 421–427.

    Article  CAS  Google Scholar 

  • Garrabou, J., J. Riera & M. Zabala, 1998. Landscape pattern indices applied to Mediterranean subtidal rocky benthic communities. Landscape Ecology 13: 225–247.

    Article  Google Scholar 

  • Garrabou, J., E. Ballesteros & M. Zabala, 2002. Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuarian Coastal Shelf Science 55: 493–508.

    Article  Google Scholar 

  • Gleason, A. C. R., Reid, R. P., Voss, K. J. 2007. Automated classification of underwater multispectral imagery for coral reef monitoring, Proceedings of MTS/IEEE Oceans 2007, 1–4 October, 2007.

  • Golmen, L.G., 2007. Potensiale for havenergiproduksjon i Møre og Romsdal, in: 04/2007, R.r.N. (Ed.), Runde miljøsenter/Energuide rapport om bølgje/tide energi i M&R. Runde miljøsenter. Norway: 53 pp.

  • Guinda, X., A. Gracia, A. Puente, J. A. Juanes, Y. Rzhanov & L. Mayer, 2013. Application of landscape mosaics for the assessment of subtidal macroalgae communities using the CFR index. Deep-Sea Research II. doi:10.1016/j.dsr2.2013.09.037i.

    Google Scholar 

  • Jensen, J. R., 1996. Introductory digital image processing, 2nd ed. Prentice-Hall, Inc., Upper Saddle River: 379 pp.

    Google Scholar 

  • Kohler, K. E. & S. M. Gill, 2006. Coral Point Count with Excel extensions (CPCe): a visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geoscience 32: 1259–1269.

    Article  Google Scholar 

  • Lampadariou, N., I. Karakassis & T. H. Pearson, 2005. Cost/benefit analysis of a benthic monitoring programme of organic benthic enrichment using different sampling and analysis methods. Marine Pollution Bulletin 50: 1606–1618.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, G. H. & R. P. Clark, 1993. Point quadrat versus video transect estimates of the cover of benthic red algae. Marine Ecology Progres Series 101: 203 pp.

    Article  Google Scholar 

  • Magagna, D., Greaves, D., Conley, D., O’Hagan, A. M., Holmes, B., Witt, M., et al. 2012. How Experiences of the Offshore Wind Industry Can Aid Development of the Wave Energy Sector: Lessons Learnt from EIA Studies. Proceedings of the Twenty-second (2012) International Offshore and Polar Engineering Conference. Rhodes, June 17–22, 2012: 644–651

  • Meese, R. J. & P. A. Tomich, 1992. Dots on the rocks: a comparison of percent cover estimation methods. Journal of Experimental Marine Biology and Ecology 165: 59–73.

    Article  Google Scholar 

  • Miller, I. & R. Müller, 1999. Validity and reproducibility of benthic cover estimates made during broad scale surveys of coral reefs by manta tow. Coral Reefs 18: 353–356.

    Article  Google Scholar 

  • Mortazavi, H., J. P Oakley, J. P., Barkat, B. 2013. Mitigating the effect of optical back-scatter in multispectral underwater imaging Measurement Science and Technololy 24: 074025

  • Neubert, M., H. Herold & G. Meinel, 2006. Evaluation of remote sensing image segmentation quality—further results and concepts. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Salzburg.

    Google Scholar 

  • Ohlhorst, S. L., Liddell, W. D., Taylor, R. J., Taylor, J. M.1988. Evaluation of reef census techniques. In: Choat, J. H., Barnes, D., Borowitzka, M. A., Coll, J. C., Davies, P. J., Flood, P., Hatcher, B. G., Hopley, D., Hutchings, P. A., Kinsey, D., Orme, G. R., Pichon, M., Sale, P. F., Sammarco, P., Wallace, C. C., Wilkinson, C., Wolanski, E., Bellwood, O. (eds), Sixth International Coral Reef Symposium, Townsville: 319–324

  • Olsgard, F., P. J. Somerfield & M. R. Carr, 1998. Relationship between taxonomic resolution, macrobenthic community patterns and disturbance. Marine Ecology Progress Series 127: 25–36.

    Article  Google Scholar 

  • Ottersen, G., E. Olsen, G. I. Meeren, A. Dommasnes & H. Loeng, 2011. The Norwegian plan for integrated ecosystem-based management of the marine environment in the Norwegian Sea. Marine Policy 35: 389–398.

    Article  Google Scholar 

  • Pech, D., A. R. Condal, E. Bourget & P. L. Ardisson, 2004. Abundance estimation of rocky shore invertebrates at small spatial scale by high-resolution digital photography and digital image analysis. Journal of Experimental Marine Biology and Ecology 299: 185–199.

    Article  Google Scholar 

  • Rzhanov, Y., Mayer, L., Fornari, D. 2004. Deep-sea image processing. Proceedings of Oceans’04, Kobe: 647–652

  • Schläppy, M.-L., A. Šaškov & T. G. Dahlgren, 2014. Impact hypothesis for offshore windfarms: explanatory models for species distribution at extremely exposed rocky areas. Continental Shelf Research 83: 14–23.

    Article  Google Scholar 

  • Shields, M. A., L. J. Dillon, D. K. Woolf & A. T. Ford, 2009. Strategic priorities for assessing ecological impacts of marine renewable energy devices in the Pentland Firth (Scotland, UK). Marine Policy 33: 635–642.

    Article  Google Scholar 

  • Shields, M. A., D. K. Woolf, E. P. M. Grist, S. A. Kerr, A. C. Jackson, R. E. Harris, M. C. Bell, R. Beharie, A. Want, M. Osalusi, W. Stuart, S. W. Gibb & J. Side, 2011. Marine renewable energy: the ecological implications of altering the hydrodynamics of the marine environment. Ocean Coast Management 54: 2–9.

    Article  Google Scholar 

  • Solan, M., J. Germanob, D. Rhoadsc, C. Smithd, E. Michaude, D. Parryg, F. Wenzhoferh, B. Kennedyi, C. Henriquesa, E. Battlea, D. Careyj, L. Ioccok, R. Valentel, J. Watsonm & R. Rosenberg, 2003. Towards a greater understanding of pattern, scale and process in marine benthic systems: a picture is worth a thousand worms. Journal of Experimental Marine Biology and Ecology 285–286: 313–338.

    Article  Google Scholar 

  • Somerfield, P. J. & K. R. Clarke, 1995. Taxonomic levels, in marine community studines revisited. Marine Ecology Progress Series 127: 113–119.

    Article  Google Scholar 

  • Teixidó, N., J. Garrabou & W. E. Arntz, 2002. Spatial pattern quantification of Antarctic benthic communities using landscape indices. Marine Ecology Progress Series 242: 1–14.

    Article  Google Scholar 

  • Teixidó, N., A. Albajes-Eizagirre, D. Bolbo, E. Le Hir, M. Demestre, J. Garrabou, L. Guigues, J. M. Gili, J. Piera, T. Prelot & A. Soria-Frisch, 2011. Hierarchical segmentation-based software for cover classification analyses of seabed images (Seascape). Marine Ecology Progress Series 431: 45–53.

    Article  Google Scholar 

  • Trygonis, V. & M. Sini, 2012. photoQuad: A dedicated seabed image processing software, and a comparative error analysis of four photoquadrat methods. Journal of Experimental Marine Biology and Ecology 424–425: 99–108.

    Article  Google Scholar 

  • Vecchi, R., V. Bernardoni, C. Paganelli & G. Valli, 2014. A filter-based light absorption measurement with polar photometer: effects of sampling artefacts from organic carbon. Journal of Aerosol Science 70: 15–25.

    Article  CAS  Google Scholar 

  • Wang, L., W. P. Sousa & P. Gong, 2004. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. International Journal of Remote Sensing 25: 5655–5668.

    Article  Google Scholar 

  • Wegge, N., 2011. Small state, maritime great power? Norway’s strategies for influencing the maritime policy of the European Union. Marine Policy 35: 335–342.

    Article  Google Scholar 

Download references

Acknowledgements

The study was conducted within Work Package 5 of the Norwegian Centre for Offshore Wind Energy (NORCOWE). We acknowledge the support at marine operations provided by Halvor Mohn, Argus AS and the backing of Vestavind Offshore AS and their representative Dag Breistein. We want to thank the captain and crew of RV “Hakon Mosby” for their support and hard work throughout oceanography cruises. Also we would like to thank Svein Winther, Sergei Olenin, and Erling Heggųy who initiated parts of the project, and provided encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksej Šaškov.

Additional information

Guest editors: Steven Degraer, Jennifer Dannheim, Andrew B. Gill, Han Lindeboom & Dan Wilhelmsson / Environmental impacts of offshore wind farms

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šaškov, A., Dahlgren, T.G., Rzhanov, Y. et al. Comparison of manual and semi-automatic underwater imagery analyses for monitoring of benthic hard-bottom organisms at offshore renewable energy installations. Hydrobiologia 756, 139–153 (2015). https://doi.org/10.1007/s10750-014-2072-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2072-5

Keywords

Navigation