Skip to main content
Log in

The effects of local, buffer zone and geographical variables on lake plankton metacommunities

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Lake plankton metacommunities are affected by their surrounding multidimensional landscape. Hence, understanding mechanisms shaping lake plankton communities requires considering not only local or geographical drivers, but also drivers at buffer zone level, indicating fluxes of nutrients and organic compounds. We investigated the effects of local, buffer zone (characterised via remote sensing) and geographical level variables on the phyto- and zooplankton community composition in 100 lakes distributed over five watersheds in Finland. We examined the community variation at two spatial scales using redundancy analysis with variation partitioning. Among watersheds, phyto- and zooplankton showed a small spatial imprint in their metacommunity structure, suggesting weak dispersal limitation. Environmental drivers explained negligible shares of the community variation, indicating weak species sorting. However, within single watersheds, larger fractions of the variation in communities were explained by the effects of multi-scale variables, suggesting that communities may be structured by species sorting and mass effects. Groups of variables exerted a relatively equal influence on the community composition. Including buffer zone variables into models increased the explained community variation by one-third. Due to the unique effects of the buffer zone on plankton composition, remotely sensed buffer zone variables may serve as useful proxies in analyses of lake plankton metacommunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdi, H. & L. J. Williams, 2010. Principal component analysis. Wiley Interdisciplinary Reviews 2: 433–459.

    Article  Google Scholar 

  • Akaike, H., 1973. Information theory and an extension of the maximum likelihood principle. In Petrov B. N. & F. Czáki (eds), International Symposium on Information Theory, 2nd, Tsahkadsor, Armenian SSR, Hungary. 2–8 Sept. 1971: 267–281.

  • Alahuhta, J., J. Heino & M. Luoto, 2011. Climate change and the future distributions of aquatic macrophytes across boreal catchments. Journal of Biogeography 38: 383–393.

    Article  Google Scholar 

  • Allan, J. D., 2004. Landscapes and Riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35: 257–284.

    Article  Google Scholar 

  • Allan, J. D., D. Erickson & J. Fay, 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37: 149–161.

    Article  Google Scholar 

  • Allen, T. F. H., 1977. Scale in microscopic algal ecology: a neglected dimension. Phycologia 16: 253–257.

    Article  Google Scholar 

  • Allen, T. F. H., S. M. Bartell & J. F. Koonce, 1977. Multiple stable configurations in ordination of phytoplankton community change rates. Ecology 58: 1076–1084.

    Article  Google Scholar 

  • Arbuckle, K. E. & J. A. Downing, 2001. The influence of watershed land use on lake N: P in a predominantly agricultural landscape. Limnology and Oceanography 46: 970–975.

    Article  Google Scholar 

  • Bartels, P., J. Cucherousset, K. Steger, P. Eklöv, L. J. Tranvik & H. Hillebrand, 2012. Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics. Ecology 93: 1173–1182.

    Article  PubMed  Google Scholar 

  • Batzer, D. P., 2013. The seemingly intractable ecological responses of invertebrates in North American wetlands: a review. Wetlands 33: 1–15.

    Article  Google Scholar 

  • Beisner, B. E., P. R. Peres-Neto, E. S. Lindström, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.

    Article  PubMed  Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Büttner, G., J. Feranec, G. Jaffrain, L. Mari, G. Maucha & T. Soukup, 2004. The CORINE land cover 2000 project. EARSeL eProceedings Nr. 3(3): 331–346.

    Google Scholar 

  • Caron, D. A. & P. D. Countway, 2009. Hypotheses on the role of the protistan rare biosphere in a changing world. Aquatic Microbial Ecology 57: 227–238.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.

    Article  Google Scholar 

  • Cottenie, K., 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8: 1175–1182.

    Article  PubMed  Google Scholar 

  • Cottenie, K. & L. De Meester, 2004. Metacommunity structure: synergy of biotic interactions as selective agents and dispersal as fuel. Ecology 85: 114–119.

    Article  Google Scholar 

  • Dodson, S., 1992. Predicting crustacean zooplankton species richness. Limnology and Oceanography 37: 848–856.

    Article  Google Scholar 

  • Environmental Systems Research Institute (ESRI), 2011. ArcGIS Desktop: Release 10. Redlands, California.

    Google Scholar 

  • Erős, T., P. Sály, P. Takács, A. Specziar & P. Bíró, 2012. Temporal variability in the spatial and environmental determinants of functional metacommunity organization − stream fish in a human-modified landscape. Freshwater Biology 57: 1914–1928.

    Article  Google Scholar 

  • Fukami, T., 2004. Assembly history interacts with ecosystem size to influence species diversity. Ecology 85: 3234–3242.

    Article  Google Scholar 

  • Gelinas, M. & B. Pinel-Alloul, 2008. Relating crustacean zooplankton community structure to residential development and land-cover disturbance near Canadian Shield lakes. Canadian Journal of Fisheries and Aquatic Sciences 65: 2689–2702.

    Article  Google Scholar 

  • Gilbert, B. & J. R. Bennett, 2010. Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47: 1071–1082.

    Article  Google Scholar 

  • Gravel, D., F. Guichard & M. E. Hochberg, 2011. Species coexistence in a variable world. Ecology Letters 14: 828–839.

    Article  PubMed  Google Scholar 

  • Hanson, M. A., B. R. Herwig, K. D. Zimmer, J. Fieberg, S. R. Vaughn, R. G. Wright & J. A. Younk, 2012. Comparing effects of lake- and watershed-scale influences on communities of aquatic invertebrates in shallow lakes. PLoS ONE 7: e44644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, management. Canadian Journal of Fisheries and Aquatic Sciences 37: 877–900.

    Article  Google Scholar 

  • Heck, K. L., T. J. B. Carruthers, C. M. Duarte, A. R. Hughes, G. Kendrick, R. J. Orth, et al., 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11: 1198–1210.

    Article  Google Scholar 

  • Hershey, A. E., G. M. Gettel, M. E. Mcdonald, M. C. Miller, H. Mooers, W. J. O’brien, J. Pastor, C. Richards & J. A. Schuldt, 1999. A geomorphic–trophic model for landscape control of Arctic lake food webs. BioScience 49: 887–897.

    Article  Google Scholar 

  • Holyoak, M., M. A. Leibold, R. & D. Holt (eds), 2005. Metacommunities: Spatial Dynamics and Ecological Communities. The University of Chicago Press, Chicago.

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography, Vol. 32., Monographs in Population Biology Princeton University Press, Princeton.

    Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.

    Article  Google Scholar 

  • John, D., B. Whitton & A. Brook, 2002. The freshwater algae flora of the British Isles. Press Syndicate of the University of Cambridge, Cambridge.

    Google Scholar 

  • Jolliffe, I., 2005. Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science. John Wiley & Sons Ltd, Hoboken, New Jersey.

    Google Scholar 

  • Korhonen, J. J., J. Soininen & H. Hillebrand, 2010. A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems. Ecology 91: 508–517.

    Article  PubMed  Google Scholar 

  • Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, et al., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.

    Article  Google Scholar 

  • Leibold, M. A., E. P. Economo & P. Peres-Neto, 2010. Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecology Letters 13: 1290–1299.

    Article  PubMed  Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture. Ecology 73: 1943–1967.

    Google Scholar 

  • Liu, J., J. Soininen, B.-P. Han & S. A. J. Declerck, 2013. Effects of connectivity, dispersal directionality and functional traits on the metacommunity structure of river benthic diatoms. Journal of Biogeography 40: 2238–2248.

    Article  Google Scholar 

  • Logue, J. B., N. Mouquet, H. Peter, H. Hillebrand, et al., 2011. Empirical approaches to metacommunities – a review and comparison to theory. Trends in Ecology & Evolution 26: 482–491.

    Article  Google Scholar 

  • Loreau, M., N. Mouquet & R. D. Holt, 2003. Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecology Letters 6: 673–679.

    Article  Google Scholar 

  • Mapinfo Professional, 2008. Pitney Bowes Software. Mapinfo Professional, New York.

  • Martiny, J. B. H., B. J. Bohannan, J. H. Brown, R. K. Colwell, J. A. Fuhrman, J. L. Green, et al., 2006. Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology 4: 102–112.

    Article  CAS  PubMed  Google Scholar 

  • McQueen, D. J., M. R. S. Johannes, J. R. Post, T. J. Stewart & D. R. S. Lean, 1989. Bottom–up and top–down impacts on freshwater pelagic community structure. Ecological Monographs 59: 289–309.

    Article  Google Scholar 

  • Møller, A. & M. D. Jennions, 2002. How much variance can be explained by ecologists and evolutionary biologists? Oecologia 132: 492–500.

    Article  Google Scholar 

  • Nurminen, L. K. L. & J. A. Horppila, 2002. A diurnal study on the distribution of filter feeding zooplankton: effect of emergent macrophytes, pH and lake trophy. Aquatic Sciences 64: 198–206.

    Article  CAS  Google Scholar 

  • Økland, R. H., 2003. Partitioning the variation in a plot-by-species data matrix that is related to n sets of explanatory variables. Journal of Vegetation Science 14: 693–700.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. O’hara, G. L. Simpson, P. Solymos, M. Stevens & H. Wagner, 2012. Vegan: community ecology package. R package version 2.0-2. 2011 accessed through [http://cran.r-project.org].

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Peres-Neto, P. R., M. A. Leibold & S. Dray, 2012. Assessing the effects of spatial contingency and environmental filtering on metacommunity phylogenetics. Ecology 93: 14–30.

    Article  Google Scholar 

  • Presley, S. J., C. L. Higgins & M. R. Willig, 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908–917.

    Article  Google Scholar 

  • Ptacnik, R., T. Andersen, P. Brettum, L. Lepistö & E. Willén, 2010. Regional species pools control community saturation in lake phytoplankton. Proceedings of the Royal Society B 277: 3755–3764.

    Article  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team, 2012. R: a language and environment for statistical computing. Version 3.0.2. R Foundation for Statistical Computing, Vienna.

  • Rask, M., K. Nyberg, S.-L. Markkanen & A. Ojala, 1998. Forestry in catchments: effects on water quality, plankton, zoobenthos and fish in small lakes. Boreal Environment Research 3: 75–86.

    CAS  Google Scholar 

  • Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erős, 2011. The relative influence of spatial context and catchment- and site-scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish 20: 251–262.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, J. Huisman & F. J. Weissing, 2003. Why plankton communities have no equilibrium: solutions to the paradox. Hydrobiologia 491: 9–18.

    Article  Google Scholar 

  • Shurin, J. B., J. E. Havel, M. A. Leibold & B. Pinel-Alloul, 2000. Local and regional zooplankton species richness: a scale-independent test for saturation. Ecology 81: 3062–3073.

    Article  Google Scholar 

  • Shurin, J. B., S. E. Arnott, H. Hillebrand, A. Longmuir, B. Pinel-Alloul, M. Winder, et al., 2007. Diversity–stability relationship varies with latitude in zooplankton. Ecology Letters 10: 127–134.

    Article  PubMed  Google Scholar 

  • Smal, H., R. Kornijow & S. Ligeza, 2005. The effect of catchment on water quality and eutrophication risk of five shallow lakes (Polesie region, Eastern Poland). Polish Journal of Ecology 53: 313–327.

    CAS  Google Scholar 

  • Soininen, J., 2004. Determinants of benthic diatom community structure in boreal streams: the role of environmental and spatial factors at different scales. International Review of Hydrobiology 89: 139–150.

    Article  Google Scholar 

  • Soininen, J., 2007. Environmental and spatial control of freshwater diatoms – a review. Diatom Research 22: 473–490.

    Article  Google Scholar 

  • Soininen, J. & M. Luoto, 2012. Is catchment productivity a useful predictor of taxa richness in lake plankton communities? Ecological Applications 22: 624–633.

    Article  PubMed  Google Scholar 

  • Soininen, J., J. J. Korhonen, J. Karhu & A. Vetterli, 2011. Disentangling the spatial patterns in community composition of prokaryotic and eukaryotic lake plankton. Limnology and Oceanography 56: 508–520.

    Article  Google Scholar 

  • Soranno, P. A., K. E. Webster, K. S. Cheruvelil & M. T. Bremigan, 2009. The lake landscape-context framework: linking aquatic connections, terrestrial features and human effects at multiple spatial scales. Internationale Vereinigung für Theoretische und Angewandte Limnologie 30: 695–700.

    Google Scholar 

  • Stendera, S. & R. K. Johnson, 2006. Multiscale drivers of water chemistry of boreal lakes and streams. Environmental Management 38: 760–770.

    Article  PubMed Central  PubMed  Google Scholar 

  • Talling, J., 1993. Comparative seasonal changes, and inter-annual variability and stability, in a 26-year record of total phytoplankton biomass in four English lake basins. Hydrobiologia 268: 65–98.

    Article  Google Scholar 

  • Tangen, B. A., M. G. Butler & M. J. Ell, 2003. Weak correspondence between macroinvertebrate assemblages and land use in prairie pothole region wetlands, USA. Wetlands 23: 104–115.

    Article  Google Scholar 

  • Tikkanen, T., 1986. Kasviplanktonopas, Vol. 1. Suomen Luonnonsuojelun Tuki Oy, Forssa.

    Google Scholar 

  • Tilzer, M. & B. Beese, 1988. The seasonal productivity cycle of phytoplankton and controlling factors in Lake Constance. Swiss Journal of Hydrology 50: 1–39.

    Article  CAS  Google Scholar 

  • Van der Linden, S. & S. H. Christensen, 2008. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data. Journal of Geophysical Research, Atmospheres (1984–2012) 108: ACL18.1–ACL18.11.

    Google Scholar 

  • Vanormelingen, P., K. Cottenie, E. Michels, K. Muylaert, W. Vyverman & L. De Meester, 2008. The relative importance of dispersal and local processes in structuring phytoplankton communities in a set of highly interconnected ponds. Freshwater Biology 53: 2170–2183.

    Google Scholar 

  • Varanka, S. & M. Luoto, 2012. Environmental determinants of water quality in boreal rivers based on partitioning methods. River Research and Applications 28: 1034–1046.

    Article  Google Scholar 

  • Venäläinen, A. & M. Heikinheimo, 2002. Meteorological data for agricultural applications. Physics and Chemistry of the Earth, Parts A/B/C 27: 1045–1050.

    Article  Google Scholar 

  • Wetzel, R., 2001. Limnology: Lake and River Ecosystems. Academic Press, San Diego.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Jenni Korhonen and Johanna Karhu for helping with the field work. This study was funded by the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Meier.

Additional information

Handling editor: Gideon Gal

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1: Table of environmental drivers and their expected effects on the phyto- and zooplankton communities (DOC 48 kb)

10750_2014_2034_MOESM2_ESM.doc

ESM 2: Table of Spearman rank correlations: we calculated Spearman rank correlations to control for multicollinearity between the local and buffer zone level data set. All Spearman inter-correlations were r s < 0.07, allowing us to consider all variables in the models. Significant (P < 0.05) r s values are marked in bold (DOC 70 kb)

ESM 3: Table of the ten most frequently found phyto- and zooplankton taxa (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, S., Luoto, M. & Soininen, J. The effects of local, buffer zone and geographical variables on lake plankton metacommunities. Hydrobiologia 743, 175–188 (2015). https://doi.org/10.1007/s10750-014-2034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2034-y

Keywords

Navigation