Skip to main content
Log in

Microbial abundance patterns along a transparency gradient suggest a weak coupling between heterotrophic bacteria and flagellates in eutrophic shallow Pampean lakes

  • ARGENTINE PAMPEAN SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The aim of this work was to study the components of the microbial food web and the degree of coupling between heterotrophic bacteria (HB) and heterotrophic flagellates (HF) in different shallow lakes of the Pampa Plain over a wide range of water transparency and nutrient levels. We hypothesized that not all microorganisms (i.e., HB, HF) equally increase with nutrient levels, thus, resulting in a weaker degree of coupling between HB and HF in more eutrophic waters. During the spring–summer 2009–2011, we sampled 40 Pampean lakes situated in different watershed of Buenos Aires Province. Abundances of most microbial components were very high, even higher than those reported in the literature. HB as well as picocyanobacteria (Pcy) increases with trophic state, while no clear relationship was found between protist (HF or ciliates) and Chl-a concentrations or nutrient levels. Photosynthetic picoplankton was generally dominated by phycocyanin-rich Pcy. Lakes with high HB and low HF were abundant, which suggest these components were weakly coupled. Based on the abundance of microorganisms, we do not accumulate enough evidence to segregate Pampean lakes into two discrete groups (clear vs turbid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear and turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington DC, USA.

    Google Scholar 

  • Auer, B. & H. Arndt, 2001. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwater Biology 46(7): 959–972.

    Article  Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Article  Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosytems. Microbial Ecology 17: 111–136.

    Article  CAS  PubMed  Google Scholar 

  • Berninger, U. G., B. J. Finlay & P. Kuuppo-Leinikki, 1991. Protozoan control of bacterial abundances in freshwater. Limnology & Oceanography 36: 139–147.

    Article  Google Scholar 

  • Bird, D. F. & J. Kalff, 1984. Empirical relationship between bacterial abundance and chlorophyll concentration in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Sciences 41: 1015–1023.

    Article  Google Scholar 

  • Boenigk, J. & H. Arndt, 2002. Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81: 465–480.

    Article  PubMed  Google Scholar 

  • Burian, A., M. Schagerl & A. Yasindi, 2013. Microzooplankton feeding behaviour: grazing on the microbial and the classical food web of African soda lakes. Hydrobiologia 710: 61–72.

    Article  CAS  Google Scholar 

  • Burns, C. W. & L. M. Galbraith, 2007. Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research 29(2): 127–139.

    Article  CAS  Google Scholar 

  • Callieri, C., 2007. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwater Reviews 1: 1–28.

    Article  Google Scholar 

  • Calllieri, C., 2010. Single cells and microcolonies of freshwater picocyanobacteria: a common ecology. Journal of Limnology 69: 257–277.

    Article  Google Scholar 

  • Callieri, C. & M. L. Pinolini, 1995. Picoplankton in Lake Maggiore, Italy. International Revue der gesamten Hydrobiologie 80: 491–501.

    Article  Google Scholar 

  • Callieri, C. & J. G. Stockner, 2002. Freshwater autotrophic picoplankton: a review. Journal of Limnology 61: 1–14.

    Article  Google Scholar 

  • Canevari, P., D. E. Blanco, E. H. Bucher, G. Castro & I. Davidson, 1999. Los humedales de la Argentina. Clasificación, situación actual, conservación y legislación, 2 da ed. Wetlands International Publicación Nº46, Buenos Aires.

    Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–369.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., E. H. Stanley & M. J. V. Zanden, 2011. State of the World’s freshwater ecosystems: physical, chemical, and biological changes. Ecosystems 36: 75–99.

    Google Scholar 

  • Chen, M., F. Chen, B. Zhao, Q. L. Wu & F. Kong, 2010. Seasonal variation of microbial eukaryotic community composition in the large, shallow, subtropical Taihu Lake, China. Aquatic Ecology 44: 1–12.

    Article  CAS  Google Scholar 

  • Chróst, R., A. Tomasz, K. Kalinowska, & A. Skowronska, 2009. Abundance and Structure of Microbial Loop Components (Bacteria and Protists) in Lakes of Different Trophic Status. Journal of Microbiology and Biotechnology 9: 858–868. doi:10.4014/jmb.0812.651.  

  • Clarke, K. R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.

    Article  Google Scholar 

  • Claps, M. C., N. A. Gabellone & H. H. Benítez, 2004. Zooplankton biomass in an eutrophic shallow lake (Buenos Aires, Argentina): spatio-temporal variations. Annales de Limnologie: International Journal of Limnology 40(3): 201–210.

    Article  Google Scholar 

  • Cole, J. J., S. Finlay & M. L. Pace, 1988. Bacterial production in fresh and saltwater ecosystems: across system overview. Marine Ecology Progress Series 43: 1–10.

    Article  Google Scholar 

  • Conty, A. & E. Bécares, 2013. Unimodal patterns of microbial communities with eutrophication in Mediterranean shallow lakes. Hydrobiologia 700: 257–265.

    Article  Google Scholar 

  • Felföldi, B., B. Somogyi, K. Márialigeti & L. Vöros, 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). Journal of Limnology 68(2): 385–395.

    Article  Google Scholar 

  • Fermani, P., N. Diovisalvi, A. Torremorell, L. Lagomarsino, H. Zagarese & F. Unrein, 2013. The microbial food web structure of a hypertrophic warm-temperate shallow lake, as affected by contrasting zooplankton assemblages. Hydrobiologia 714: 115–130.

    Article  CAS  Google Scholar 

  • Fernández-Cirelli, A. & P. Miretzky, 2004. Ionic relations: a toll for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quaternary International 114(1): 113–121.

    Article  Google Scholar 

  • Gasol, J. M., 1994. A framework for the assessment of top–down vs bottom-up control of heterotrophic nanoflagellate abundance. Marine Ecology Progress Series 113: 291–300.

    Article  Google Scholar 

  • Gasol, J. M., A. M. Simons & J. Kalff, 1995. Patterns in the top–down versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. Journal of Plankton Research 17: 1879–1903.

    Article  Google Scholar 

  • Gasol, J. M., C. Pedrós-Alió & D. Vaqué, 2002. Regulation of bacterial assemblages in oligotrophic plankton systems: results from experimental and empirical approaches. Antonie van Leeuwenhoek 81: 435–452.

    Article  CAS  PubMed  Google Scholar 

  • Giraut, M., R. Aguglino, C. Lupano, E. Bozzarello, J. Cornejo & C. Rey, 2007. Regiones hídricas superficiales de la provincia de Buenos Aires: Actualización cartográfica digital. Congreso de la Asociación Española de Teledetección. 19–21 de septiembre, Mar del Plata, Argentina.

  • González Sagrario, M. A., E. Balseiro, R. Ituarte & E. Spivak, 2009. Macrophytes as refuge or risky areas for zooplankton: a delicate balance set by littoral predacious macroinvertebrates. Freshwater Biology 54: 1042–1053.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological Statistics software for education and data analysis. Palaeontologia Electronica 4(1): 1–9.

    Google Scholar 

  • Hirose, M., Y. Nishibe, M. Ueki & S. Nakano, 2003. Seasonal changes in the abundance of autotrophic picoplankton and some environmental factors in hypereutrophic Furuike Pond. Aquatic Ecology 37: 37–43.

    Article  Google Scholar 

  • Iglesias, C., 2010. Cascading effects of predators in temperate and subtropical shallow lakes. PhD Thesis. Aarhus University, Denmark.

  • Iriondo, M. H. & E. C. Drago, 2004. The headwater hydrographic characteristics of large plains: the Pampa case. Ecohydrology and Hydrobiology 4: 7–16.

    Google Scholar 

  • Izaguirre, I. & A. Vinocur, 1994. Algal assemblages from shallow lakes of the Salado River Basin (Argentina). Hydrobiologia 289(1–3): 57–64.

    Article  Google Scholar 

  • Izaguirre, I., R. Sinistro, M. R. Schiaffino, M. L. Sánchez, F. Unrein & R. Massana, 2012. Grazing rates of protists in wetlands under contrasting light conditions due to free-floating plants. Aquatic Microbial Ecology 65: 221–232.

    Article  Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær, et al., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200–201: 219–227.

    Article  Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Søndergaard & K. Christ- offersen (Eds), 1998. The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, New York.

    Google Scholar 

  • Jürgens, K. & E. Jeppesen, 2000. The impact of metazooplankton on the structure of the microbial food web in a shallow, hypertrophic lake. Journal of Plankton Research 22: 1047–1070.

    Article  Google Scholar 

  • Jürgens, K. & C. Matz, 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81: 413–434.

    Article  PubMed  Google Scholar 

  • Jürgens, K., J. Pernthaler, S. Schalla & R. Amann, 1999. Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Applied and Environmental Microbiology 65: 1241–1250.

    PubMed Central  PubMed  Google Scholar 

  • Kalinowska, K., 2004. Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Polish Journal of Ecology 52(1): 19–34.

    CAS  Google Scholar 

  • Kilham, P., 1981. Pelagic bacteria: extreme abundances in african saline lakes. Naturwissenshaften 68: 380–381.  

  • Kirk, J. T. O., 1994a. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, New York.

    Book  Google Scholar 

  • Kirk, J. T. O., 1994b. Characteristics of the light field in highly turbid waters: a Monte Carlo study. Limnology and Oceanography 39: 702–706.

    Article  Google Scholar 

  • Kosten, S., M. Vernoij, E. Van Nes, M. A. Sagrario, J. G. P. W. Clevers & M. Scheffer, 2012. Bimodal transparency as an indicator for alternative states in South American lakes. Freshwater Biology 57: 1191–1201.

    Article  Google Scholar 

  • Kruskal, J. B., 1964. Nonmetric multidimensional scaling: a numerical method. Phychometrika 2: 115–129.

    Article  Google Scholar 

  • Küppers, M. G. & M. C. Claps, 2012. Spatiotemporal Variations in Abundance and Biomass of Planktonic Ciliates Related to Environmental Variables in a Temporal Pond. Argentina. Zoological Studies 51(3): 298–313.

    Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier Science BV, Amsterdam.

    Google Scholar 

  • Lopretto, E. & G. Tell, 1995. Ecosistemas de aguas continentales. Metodologías para su uso. Tomo I. Ediciones Sur, La Plata.

  • Macek, M., D. Pestová & M. E. Martínez Pérez, 2008. Dinámica temporal y espacial de la comunidad de ciliados en un lago monomíctico-cálido Alchichica (Puebla, México). Hidrobiológica 18(1): 25–35.

    Google Scholar 

  • Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gallego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.

    Article  Google Scholar 

  • Meerhoff, M., C. Fosalba, C. Bruzzone, N. Mazzeo, W. Noordoven & E. Jeppesen, 2006. An experimental study of habitat choice by Daphnia: plants signal danger more than refuge in subtropical lakes. Freshwater Biology 51: 1320–1330.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. T. De Mello, C. Iglesias, A. R. Pedersen & L. E. Jeppesen, 2007a. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente & L. E. Jeppesen, 2007b. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Mózes, A., M. Présing & L. Vörös, 2006. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Internationale Revue der gesamten Hydrobiologie 91: 38–50.

    Article  Google Scholar 

  • Muylaert, K., K. V. D. Gucht, N. Vloemans, L. D. Meester, M. Gillis & W. Vyverman, 2002. Relationship between Bacterial Community Composition and Bottom-Up versus Top-Down Variables in Four Eutrophic Shallow Lakes. Society 68(10): 4740–4750.

  • Nakano, S., N. Ishii, P. M. Manage & Z. Kawabata, 1998. Trophic roles of heterotrophic nanoflagellates and ciliates among planktonic organisms in a hypereutrophic pond. Aquatic Microbial Ecology 16: 153–161.

    Article  Google Scholar 

  • Pérez, G. L., M. E. Llames, L. Lagomarsino & H. Zagarese, 2011. Seasonal variability of optical properties in a highly turbid lake (Laguna Chascomús, Argentina). Photochemistry and Photobiology 87: 659–670.

    Article  PubMed  Google Scholar 

  • Pérez, G. L., L. Lagomarsino & H. E. Zagarese, 2013. Optical properties of highly turbid shallow lakes with contrasting turbidity origins: the ecological and water management implications. Journal of Environmental Management journal 130: 207–220.

    Google Scholar 

  • Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology 3: 537–546.

    Article  CAS  PubMed  Google Scholar 

  • Pernthaler, J., B. Sattler, K. Šimek, A. Schwarzenbacher & R. Psenner, 1996. Top–down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology 10: 255–263.

    Article  Google Scholar 

  • Pernthaler, J., E. Zöllner, F. Warnecke & K. Jürgens, 2004. Bloom of Filamentous Bacteria in a Mesotrophic Lake: identity and Potential Controlling Mechanism. Applied and Environmental Microbiology 70(10): 6272.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Porter, K. G., H. Paerl, R. Hodson, M. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs. In Carpenter, S. R. (ed.), Complex Interactions in Lake Communities. Springer-Verlag, New York.

    Google Scholar 

  • Quirós, R., 1988. Relashionships between air temperature, depth, nutrients and chlorophyll in Argentinian lakes. Verh International Verein Limnology 23: 647–658.

    Google Scholar 

  • Quirós, R., 2004. Sobre la Morfología de las Lagunas Pampeanas. Serie de Documentos de Trabajo del Área de Sistemas de Producción Acuática. Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.

  • Quirós, R, 2005. La ecología de las lagunas pampeanas. Investigación y Ciencia. Facultad de Agronomía. Universidad de Buenos Aires, 1–13.

  • Quirós, R., C. Baigún, S. Cuch, R. & R. Delfino, 1988. Evaluación del rendimiento pesquero potencial de la República Argentina. Informe Técnico nº 7. Instituto Nacional de Investigación y Desarrollo Pequero (INIDEP), Argentina.

  • Quirós, R., A. M. Rennella, M. B. Boveri, J. J. Rosso & A. Sosnovsky, 2002. Factores que afectan la estructura y el funcionamiento de las lagunas pampeanas. Ecología Austral 12: 175–185.

    Google Scholar 

  • Quirós, R., M. B. Boveri, C. A. Petracchi, et al., 2006. Los efectos de la agriculturación del humedal pampeano sobre la eutrofización de sus lagunas. Eutrofizaçaõ na América do Sul: Causas, conseqüências e tecnologias de gerenciamento e controle: 1–16. En Tundisi, J.G.; Matsmura-Tundisi, T. & Sidagis Galli, C. (eds). Instituto Internacional de Ecologia, Instituto Internacional de Ecologia e Gerenciamento Ambiental, Academia Brasileira de Ciências, Conselho Nacional de Desenvolvimento Científico e Tecnológico, InterAmerican Panel on Internacional Issues, InterAmerica Network of Academies od Sciences.

  • Riemann, B. & K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Marine Microbiology Food Webs 7: 69–100.

    Google Scholar 

  • Ringuelet, R. (1962). Los principales rasgos de las lagunas pampeanas. Anales de la Comisión de la Investigación Científica. Vol. III. Gobernación Provincia de Buenos Aires.

  • Roland, F., L. M. Lobão, L. O. Vidal, E. Jeppesen, R. Paranhos & V. L. M. Huszar, 2010. Relationships between pelagic bacteria and phytoplankton abundances in contrasting tropical freshwaters. Aquatic Microbial Ecology 60: 261–272.

    Article  Google Scholar 

  • Sarmento, H., 2012. New paradigms in tropical limnology: the importance of the microbial food web in tropical lakes. Hydrobiologia 686(1): 1–14.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584(1): 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Sherr, E. B. & B. F. Sherr, 2002. Significance of predation by protists in aquatic microbial food webs. Antonie van Leeuwenhoek 81: 293–308.

  • Sieburth, J. Mc N, V. Smetacek & J. Lenz, 1978. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fractions. Limnology and Oceanography 23: 1256–1263.

    Article  Google Scholar 

  • Sierra, E. M., M. E. Fernández Long & C. Bustos, 1994. Cronologías de inundaciones y sequías en el noreste de la provincia de Buenos Aires 1911–1989. Revista de la Facultad de Agronomía 14: 241–249.

    Google Scholar 

  • Silvoso, J., I. Izaguirre & L. Allende, 2011. Picoplankton structure in clear and turbid eutrophic shallow lakes: a seasonal study. Limnologica 41: 181–190.

    Article  CAS  Google Scholar 

  • Šimek, K., P. Hartman, J. Nedoma, J. Pernthaler, D. Springmann, J. Vrba & R. Psenner, 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquatic Microbiology Ecology 12: 49–63.

    Article  Google Scholar 

  • Sommaruga, R., 1995. Microbial and classical food webs: a visit to a hypertrophic lake. Microbial Ecology 17: 257–270.

    Article  CAS  Google Scholar 

  • Sommaruga, R. & R. D. Robarts, 1997. The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiology Ecology 24: 187–200.

    Article  CAS  Google Scholar 

  • Sommer, U. & F. Sommer, 2006. Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147: 183–194.

    Article  PubMed  Google Scholar 

  • Søndergaard, M., 1991. Phototrophic picoplancton in temper ate lakes: seasonal abundance and importance along a trophic gradient. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76(4): 505–522.

    Article  Google Scholar 

  • Soriano, A., 1992. Río de la Plata grasslands. In R. T. Coupland (ed.), Ecosystems of the world. 8A. Natural grasslands. Introduction and western hemisphere. Elsevier, New York, USA.

  • Stenuite, S., A. L. Tarbe, H. Sarmento, F. Unrein, S. Pirlot, D. Sinyinza, S. Thill, M. Lecomte, B. Leporcq, J. M. Gasol & J. P. Descy, 2009. Photosynthetic picoplankton in Lake Tanganyika: biomass distribution patterns with depth, season and basin. Journal of Plankton Research 31: 1531–1544.

    Article  CAS  Google Scholar 

  • Stomp, M., J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp & L. J. Stal, 2007. Colourful coexistence of red and green picocyanobacteria in lakes and seas. Ecology Letters 10: 290–298.

    Article  PubMed  Google Scholar 

  • Tijdens, M., H. L. Hoogveld, M. P. Kamst-van Agterveld, S. G. H. Simis, A.-C. Baudoux, H. J. Laanbroek & H. J. Gons, 2008. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake. Microbial Ecology 56: 29–42.

    Article  PubMed Central  PubMed  Google Scholar 

  • Torremorell, A. M., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Article  Google Scholar 

  • Vaqué D., J. Gasol & C. Marrasé, 1994. Grazing rates on bacteria: the significance of methodology and ecological factors. Marine Ecology Progress Series 109: 263–274.  

  • Vörös, L., C. Callieri, K. V. Balogh & R. Bertoni, 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia 369–370: 117–125.

    Article  Google Scholar 

  • Weisse, T., H. Müller, R. M. Pinto-Coelho, A. Schweizer, D. Springmann & G. Baldringer, 1990. Response of the microbial loop to the phytoplankton spring bloom in a large prealpine lake. Limnology and Oceanography 35: 781–794.

    Article  Google Scholar 

  • White, P., J. Kalff, J. Rasmussen & J. Gasol, 1991. The effect of temperature and algal biomass on bacterial production and specific growth rate in freshwater and marine habitats. Microbial Ecology 21: 99–118.

  • Wichelen, V., J. Johansson, L. S. Vanormelingen, P. Declerck, S. A. Lauridsen, T. L. De Meester, L. E. Jeppesen & W. Vyverman, 2013. Planktonic ciliate community structure in shallow lakes of lowland Western Europe. European Journal of Protistology 49: 538–551.

    Article  PubMed  Google Scholar 

  • Wieltschnig, C., A. Kirschner, A. Steitz & B. Velimirov, 2001. Weak coupling between heterotrophic nanoflagellates and bacteria in a eutrophic freshwater environment. Microbial Ecology 42: 159–167.

    CAS  PubMed  Google Scholar 

  • Zinabu, G. M. & W. D. Taylor, 1997. Bacteria-chlorophyll relationships in Ethiopian lakes of varying salinity: are soda lakes different? Journal of Plankton Research 19(5): 647–654.

    Article  Google Scholar 

  • Zinabu, G. M., L. J. Chapman & C. A. Chapman, 2002. Conductivity as a predictor of a total cations and salinity in Ethiopian lakes and rivers: revisiting earlier models. Limnologica 32: 21–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anselmo Reggiardo for his helpful comments and Josep M. Gasol for sharing the original data set from Gasol (1994). We also acknowledge the Editor in chief and two anonymous reviewers for their valuable comments on the manuscript. This work was supported by The Argentinean network for the assessment and monitoring of Pampean shallow lakes (PAMPA2), and by Agencia Nacional de Promoción Científica y Tecnológica, PICT (PICT07-00429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Lagomarsino.

Additional information

Guest editors: I. Izaguirre, L. A. Miranda, G. M. E. Perillo, M. C. Piccolo & H. E. Zagarese / Shallow Lakes from the Central Plains of Argentina

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 27 kb)

Supplementary material 2 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fermani, P., Torremorell, A., Lagomarsino, L. et al. Microbial abundance patterns along a transparency gradient suggest a weak coupling between heterotrophic bacteria and flagellates in eutrophic shallow Pampean lakes. Hydrobiologia 752, 103–123 (2015). https://doi.org/10.1007/s10750-014-2019-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2019-x

Keywords

Navigation