Skip to main content

Advertisement

Log in

Invertebrate communities delineate hydro-ecoregions and respond to anthropogenic disturbance in East-Amazonian streams

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Many tropical regions lack models predicting the biological and environmental conditions expected in any given area, thus precluding the implementation of reference condition-based water policies. We focused on streams of French Guiana, and tested two predictions: geomorphology determines ecological sub-regions that have typical invertebrate communities, and diversity declines as anthropogenic pressure increases. Sixty-five stream sites were sampled for benthic invertebrates and physical–chemical variables across various watersheds. We used the Self-Organizing Map algorithm (neural network) to model relationships between invertebrate communities and environmental variables. Sites characterized by invertebrate communities clustered into two major subsets matching French Guiana’s hydro-ecoregions: the coastal alluvial plain characterized by recent sediment and low elevations, and the Guiana Shield characterized by an eroded rocky substrate and dense rainforests. Changes in community composition, and to a lesser extent taxonomic richness within each sub-region revealed ecological impacts of gold mining and logging, further clustering hydro-ecoregions into subsets of reference and impaired sites. Further analyses would, however, be needed to identify tipping points between natural and disturbed states, especially in remote headwater streams where gold mining had the harsher impact upon freshwater diversity, making upstream communities resembling the most downstream impacted ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AFNOR, 2000. Qualité de l’eau. Détermination de la turbidité. NF EN ISO 7027. AFNOR Report.

  • AFNOR, 2005a. Qualité de l’eau. Dosage des matières en suspension. Méthode par filtration sur filtre en fibres de verre. NF EN 872. AFNOR Report: 10 pp.

  • AFNOR, 2005b. Qualité de l’eau. Dosage du phosphore. Méthode spectrométrique au molybdate d’ammonium. NF EN ISO 6878. AFNOR Report: 22 pp.

  • Arrington, D. A. & K. O. Winemiller, 2006. Habitat affinity, the seasonal flood pulse, and community assembly in the littoral zone of a Neotropical floodplain river. Journal of the North American Benthological Society 25: 126–141.

    Article  Google Scholar 

  • Bernadet, C., H. Touron-Poncet, C. Desrosiers, A. Compin, N. Bargier & R. Céréghino, 2013. Invertebrate distribution patterns and river typology for the implementation of the Water Framework Directive in Martinique, French Lesser Antilles. Knowledge and Management of Aquatic Ecosystems 408: 1–15.

    Article  Google Scholar 

  • Bongers, F., P. Charles-Dominique, P. Forget & P.-M. Théry, 2001. Nouragues: dynamics and Plant Animal Interactions in a Neotropical Rain Forest. Kluwer Academic Publishers, Boston: 421.

    Book  Google Scholar 

  • Borja, A., 2005. The European water framework directive: a challenge for nearshore, coastal and continental shelf research. Continental Shelf Research 25: 1768–1783.

    Article  Google Scholar 

  • Brosse, S., G. Grenouillet, M. Gevrey, K. Khazraie & L. Tudesque, 2011. Small-scale gold mining erodes fish assemblage structure in small neotropical streams. Biodiversity and Conservation 20: 1013–1026.

    Article  Google Scholar 

  • Buss, D. F., D. F. Baptista, J. L. Nessimian & M. Egler, 2004. Substrate specificity, environmental degradation and disturbance structuring macroinvertebrate assemblages in neotropical streams. Hydrobiologia 518: 179–188.

    Article  Google Scholar 

  • Céréghino, R. & Y. S. Park, 2009. Review of the self-organizing map (SOM) approach in water resources: commentary. Environmental Modelling and Software 24: 945–947.

    Article  Google Scholar 

  • Chandesris, A. & J. G. Wasson, 2005. Hydro-écorégions de la Guyane. Propositions de régionalisation des écosystèmes aquatiques en vue de l’application de la Directive Cadre Européenne sur l’Eau. Convention CEMAGREF. Report.

  • Cleary, D., 1990. Anatomy of the Amazon Gold Rush. University of Iowa Press, Iowa City, USA: 287.

    Google Scholar 

  • Compin, A. & R. Céréghino, 2007. Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical variables and land-cover in Southwestern France. Landscape Ecology 22: 1215–1225.

    Article  Google Scholar 

  • Coppel, A., V. Gond & S. Allo, 1998. Bilan de l’impact de l’orpaillage en Guyane. Une étude fondamentale. RDV techniques ONF 20: 1–9.

    Google Scholar 

  • Dangles, O., B. Malmqvist & H. Laudon, 2004. Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. Oikos 104: 149–155.

    Article  Google Scholar 

  • Hammond, D. S., V. Gond, B. De Thoisy, P. M. Forget & B. P. E. Dedijn, 2007. Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America. Ambio 36: 661–670.

    Article  PubMed  Google Scholar 

  • Giraudel, J. L. & S. Lek, 2001. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecological Modelling 146: 329–339.

    Article  Google Scholar 

  • Graham, A. A., 1990. Siltation of stone surface periphyton in rivers by clay-sized particles from low concentrations in suspension. Hydrobiologia 199: 107–115.

    Article  Google Scholar 

  • Kohonen, T., 2001. Self-Organizing Maps, 3rd ed. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Mendiola, M. E., 2008. Rapid ecological assessment of tropical fish communities in a gold mine area of Costa Rica. Revista de Biología Tropical 56: 1971–1990.

    Google Scholar 

  • Merritt, R. W. & K. Cummins, 1996. An Introduction of the Aquatic Insects of North America, 3rd ed. Kendall & Hunt Publishing Company, Dubuque, IA.

    Google Scholar 

  • Mol, J. H. & P. E. Ouboter, 2004. Downstream effects of erosion from small-scale gold mining on the instream habitat and fish community of a small neotropical forest stream. Conservation Biology 18: 201–214.

    Article  Google Scholar 

  • Mondy, C., B. Villeneuve, V. Archaimbault & P. Usseglio-Polatera, 2012. A new macroinvertebrate-based multimetric index (I2M2) to evaluate ecological quality of French wadeable streams fulfilling the WFD demands: a taxonomical and trait approach. Ecological Indicators 18: 452–467.

    Article  Google Scholar 

  • Negnevitsky, M., 2002. Artificial Intelligence : A Guide to Intelligent Systems. Pearson Education, Englewood Cliffs, MA.

    Google Scholar 

  • Park, Y. S., R. Céréghino, A. Compin & S. Lek, 2003. Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters. Ecological Modelling 160: 265–280.

    Article  Google Scholar 

  • Petrin, Z., H. Laudon & B. Malmqvist, 2007. Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? Freshwater Biology 52: 2172–2183.

    Article  CAS  Google Scholar 

  • Salman, A. A. S., J. Heino, M. R. C. Salmah, A. A. Hassan, A. H. Suhaila & M. R. Madrus, 2013. Drivers of beta diversity of macroinvertebrate communities in tropical forest streams. Freshwater Biology 58: 1126–1137.

    Article  Google Scholar 

  • Sirola, M., G. Lampi & J. Parviainen, 2004. Using self-organizing map in a computerized decision support system. In Pal, N., N. Kasabov, R. Mudi, S. Pal & S. Parui (eds), Neural Information Processing. Springer-Verlag, Berlin: 136–141.

    Chapter  Google Scholar 

  • Sites, R. W., M. R. Wilig & M. J. Linit, 2003. Macroecology of aquatic insects: a quantitative analysis of taxonomic richness and composition in the Andes mountains of northern Ecuador. Biotropica 35: 226–239.

    Google Scholar 

  • Sloane-Richey, J., M. A. Perkins & K. W. Malueg, 1981. The effects of urbanization and stormwater runoff on the food quality in two salmonid streams. Verhandlungen des Internationalen Verein Limnologie 21: 812–818.

    Google Scholar 

  • Touron-Poncet, H., C. Bernadet, A. Compin, N. Bargier & R. Céréghino, 2013. River classification as the basis for freshwater biological assessment in overseas Europe: issues raised from Guadeloupe (French Lesser Antilles). International Review of Hydrobiology 98: 34–43.

    Article  Google Scholar 

  • Ultsch, A., 1993. Self-organizing neural networks for visualization and classification. In Opitz, O., B. Lausen & R. Klar (eds), Information and Classification. Springer, Berlin: 307–313.

    Chapter  Google Scholar 

  • Vesanto J., J. Himberg, E. Alhoniemi & J. Parhankangas, 1999. Self-organising map in Matlab: the SOM Toolbox. Proceedings of the Matlab Digital Signal Processing Conference. Espoo, Finland: 35–40.

  • Vigouroux, R., L. Guillemet & P. Cerdan, 2005. Etude de l’impact de l’orpaillage alluvionnaire sur la qualité des milieux aquatiques et la vie piscicole. Etude et mesure de la qualité physico-chimique des eaux de l’Approuague au niveau de la Montagne Tortue et son impact sur les populations de poissons et d’invertebres aquatiques. Hydreco-DAF. Report available at http://www.guyane.ecologie.gouv.fr.

  • Yule, C. M., L. Boyero & R. Marchant, 2010. Effects of sediment pollution on food webs in a tropical river (Borneo, Indonesia). Marine and Freshwater Research 61: 204–213.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Logistic support was provided by the Laboratory Hydreco Guyane. We also thank Allard Luc for technical support in the field, and Arthur Compin for drawing Fig. 1. This study was funded by the French Direction de l’Environnement, de l’Aménagement et du Logement de Guyane (DEAL Guyane), the French Office National de Eau et des Milieux Aquatiques (ONEMA), and the French Guiana Amazonian Park. ND is supported by an ANRT-CIFRE grant N° 2011/0797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Dedieu.

Additional information

Handling editor: Luz Boyero

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedieu, N., Vigouroux, R., Cerdan, P. et al. Invertebrate communities delineate hydro-ecoregions and respond to anthropogenic disturbance in East-Amazonian streams. Hydrobiologia 742, 95–105 (2015). https://doi.org/10.1007/s10750-014-1969-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1969-3

Keywords

Navigation