Skip to main content

Advertisement

Log in

Macroinvertebrates select complex macrophytes independently of their body size and fish predation risk in a Pampean stream

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macrophyte complexity has been associated with high abundance and richness of macroinvertebrates. While the effect on richness has been attributed to an increase in the number of niches, the effect on abundance has been explained by a higher availability of space for small individuals, refuge, and/or food. For studying effects of complexity on macroinvertebrates, we used complementary approaches of laboratory choice and field colonization experiments, with macrophytes (Egeria densa and Elodea ernstae) and plastic imitations of contrasting fractal dimension. We investigated whether macroinvertebrates may actively select complex habitats by Hyalella sp. choice experiments. Then, we tested effects of complexity on macroinvertebrate density, biomass, richness, diversity, and body size using colonization experiments. Finally, a caging experiment was performed to study interacting effects of complexity and predation. The active choice of complex substrates by Hyalella sp., and the significant positive relationship between macrophyte fractal dimension and macroinvertebrate density support the existence of a positive effect of complexity on abundance. As macroinvertebrate length was not associated with fractal dimension, such differences could not be attributed to a higher space available for smaller invertebrates in complex plants. Finally, neither macroinvertebrate density nor size was reduced by fish predation in the Las Flores stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association Inc., Washington, DC.

    Google Scholar 

  • Armstrong, D. P. & T. D. Nudds, 1985. Factors influencing invertebrate size distributions in prairie potholes and implications for coexisting duck species. Freshwater Invertebrate Biology 4: 41–47.

    Article  Google Scholar 

  • Bartholomew, A. & K. Ebeid, 2011. Habitat complexity influences the microhabitat choices of desert beetles. Israel Journal of Ecology and Evolution 57: 213–221.

    Article  Google Scholar 

  • Bartholomew, A. & R. L. Shine, 2008. Space size relative to prey width (Sp/Py) influences macrofaunal colonization of artificial structures. Marine Ecology Progress Series 358: 95–102.

    Article  Google Scholar 

  • Bartholomew, A., R. J. Diaz & G. Cicchetti, 2000. New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator’s foraging success. Marine Ecology Progress Series 206: 45–58.

    Article  Google Scholar 

  • Beukers, J. S. & G. P. Jones, 1998. Habitat complexity modifies the impact of piscivores on a coral reef fish population. Oecologia 114: 50–59.

    Article  Google Scholar 

  • Cattaneo, A. & J. Kalff, 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophytes beds. Limnology & Oceanography 25: 280–289.

    Article  Google Scholar 

  • Cheruvelil, K. S., P. A. Soranno & R. D. Serbin, 2000. Macroinvertebrates associated with submerged macrophytes: sample size and power to detect effects. Hydrobiologia 441: 133–139.

    Article  Google Scholar 

  • Clench, H., 1979. How to make regional lists of butterflies: some thoughts. Journal Lepidopterist’s Society 33: 216–321.

    Google Scholar 

  • Colwell, R. K., 2006. EstimateS: Statistical estimation of species richness and shared species from samples, Version 8. Persistent. purl.oclc.org/estimates.

  • Cooper, S., L. Barmuta, O. Sarnelle, K. Kratz & S. Diehl, 1997. Quantifying spatial heterogeneity in streams. Journal of the North American Benthological Society 16: 174–188.

    Article  Google Scholar 

  • Coull, B. C. & J. B. J. Wells, 1983. Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. Ecology 64: 1599–1609.

    Article  Google Scholar 

  • Crowder, L. B. & W. E. Cooper, 1982. Habitat structural complexity and the interaction between bluegills and their prey. Ecology 63: 1802–1813.

    Article  Google Scholar 

  • Dibble, E. D., K. J. Killgore & G. O. Dick, 1996. Measurement of plant architecture in seven aquatic plants. Journal of Freshwater Ecology 11: 311–318.

    Article  Google Scholar 

  • Diehl, S., 1992. Fish predation and benthic community structure-the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Article  Google Scholar 

  • Dionne, M. & C. L. Folt, 1991. An experimental analysis of macrophyte growth forms as fish foraging habitat. Canadian Journal of Fisheries and Aquatic Sciences 48: 123–131.

    Article  Google Scholar 

  • Dodds, W. K. & B. J. F. Biggs, 2002. Water velocity attenuation by stream periphyton and macrophytes in relation to growth form and architecture. Journal of the North American Benthological Society 21: 2–15.

    Article  Google Scholar 

  • Feijoó, C. & R. Lombardo, 2007. Baseline water quality and macrophytes assemblages in Pampean streams: a regional approach. Water Research 41: 1399–1410.

    Article  PubMed  Google Scholar 

  • Ferreiro, N., C. Feijoó & L. Leggieri. 2010. Efecto de la complejidad de las macrófitas sobre la densidad de los macroinvertebrados acompañantes en un arroyo pampeano. Libro de resúmenes de la IV Reunión Binacional de Ecología. Asociación Argentina de Ecología (ASAE) – Sociedad de Ecología de Chile (SOCECOL). http://www.conicet.gov.ar/new_scp/detalle.php?keywords=&id=23411&congresos=yes&detalles=yes&congr_id=906863.

  • Ferreiro, N., C. Feijoó, A. Giorgi & L. Leggieri, 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199–211.

    Article  Google Scholar 

  • Ferreiro, N., A. Giorgi & C. Feijoó, 2013. Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquatic Ecology 47: 389–401.

    Article  Google Scholar 

  • Gaston, K. J. & J. H. Lawton, 1988. Patterns in the distribution and abundance of insect populations. Nature 331: 709–712.

    Article  Google Scholar 

  • Giorgi, A., C. Feijoó & G. Tell, 2005. Primary producers in a Pampean stream: temporal variation and structuring role. Biodiversity and Conservation 14: 1699–1718.

    Article  Google Scholar 

  • Gosselain, V., C. Hudon, A. Cattaneo, P. Gagnon, D. Planas & D. Rochefort, 2005. Physical variables driving epiphytic algal biomass in a dense macrophyte bed of the St. Lawrence River (Quebec, Canada). Hydrobiologia 534: 11–22.

    Article  Google Scholar 

  • Gotelli, N. J. & R. K. Colwell, 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379–391.

    Article  Google Scholar 

  • Gregg, W. W. & F. L. Rose, 1982. The effects of aquatic macrophytes on the stream microenvironment. Aquatic Botany 14: 309–324.

    Article  Google Scholar 

  • Gunnarsson, B., 1992. Fractal dimension of plants and body size distribution in spiders. Functional Ecology 6: 636–641.

    Article  Google Scholar 

  • Halley, J., S. Hartley, A. Kallimanis, W. Kunin, J. Lennon & S. Sgardelis, 2004. Uses and abuses of fractal methodology in ecology. Ecology Letters 7: 254–271.

    Article  Google Scholar 

  • Hansen, J. P., S. A. Wikström, H. Axemar & L. Kautsky, 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquatic Ecology 45: 11–22.

    Article  CAS  Google Scholar 

  • Hauser, A., M. Attrill & P. Cotton, 2006. Effects of habitat complexity on the diversity and abundance of macrofauna colonizing artificial kelp holdfasts. Marine Ecology Progress Series 325: 93–100.

    Article  Google Scholar 

  • Heck, K. & L. Crowder, 1991. Habitat structure and predator prey interactions in vegetated aquatic systems. In Bell, S., E. McCoy & H. Mushinsky (eds), Habitat Structure: The Physical Arrangement of the Objects in Space. Chapman and Hall, London: 281–299.

    Chapter  Google Scholar 

  • Kelaher, B. P., 2003. Changes in habitat complexity negatively affect diverse gastropod assemblages in coralline algal turf. Oecologia 135: 431–441.

    PubMed  CAS  Google Scholar 

  • Kimball, S. & P. Mattis, 1996–2008. GNU Image Manipulation Program (GIMP). http://www.gimp.org.

  • Krebs, C. J., 1986. Capítulo 4: 19–20. In Krebs, C. J. (ed.), Ecología: análisis experimental de la distribución y abundancia, 2ª ed. Pirámide, Madrid.

    Google Scholar 

  • Krecker, F. H., 1939. A comparative study of the animal populations of certain submerged plants. Ecology 20: 553–562.

    Article  Google Scholar 

  • Lillie, R. A. & J. Budd, 1992. Habitat architecture of Myriophyllum spicatum L. as an index to habitat quality for fish and macroinvertebrates. Journal of Freshwater Ecology 7: 113–125.

    Article  Google Scholar 

  • Lucena-Moya, P. & I. C. Duggan, 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquatic Ecology 45: 279–287.

    Article  Google Scholar 

  • MacAbendroth, L., P. Ramsay, A. Foggo, S. Rundle & D. Bilton, 2005. Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos 111: 279–290.

    Article  Google Scholar 

  • MacArthur, R. H. & J. W. MacArthur, 1961. On bird species diversity. Ecology 42: 594–598.

    Article  Google Scholar 

  • Mittelbach, G. G., 1981. Patterns of invertebrate size and abundance in aquatic habitats. Canadian Journal of Fisheries and Aquatic Sciences 38: 896–904.

    Article  Google Scholar 

  • Morse, D., J. Lawton, M. Dodson & M. Williamson, 1985. Fractal dimension of vegetation and the distribution of arthropod body length. Nature 314: 731–733.

    Article  Google Scholar 

  • Rasband, W., 1997–2008. ImageJ. U.S. National Institutes of Health, Bethesda, MD. http://rsb.info.nih.gov/ij/.

  • Russo, A. R., 1987. Role of habitat complexity in mediating predation by the gray damselfish Abudefduf sordidus on epiphytal amphipods. Marine Ecology Progress Series 36: 101–105.

    Article  Google Scholar 

  • Schmid, P. E., 2000. Fractal properties of habitat and patch structure in benthic ecosystems. Advances in Ecological Research 30: 339–401.

    Article  Google Scholar 

  • Schmid, P. E., M. Tokeshi & J. M. Schmid-Araya, 2000. Relation between population density and body size in stream communities. Science 289: 1557–1560.

    Article  PubMed  CAS  Google Scholar 

  • St. Pierre, J.I., & K.E. Kovalenko, 2014. Effect of habitat complexity attributes on species richness. Ecosphere 5: 1–10.

  • Stead, T. K., J. M. Schmid-Araya, P. E. Schmid & A. G. Hildrew, 2005. The distribution of body size in a stream community: one system, many patterns. Journal of Animal Ecology 74: 475–487.

    Article  Google Scholar 

  • Stewart, T., T. Shumaker & T. Radzio, 2003. Linear and nonlinear effects of habitat structure on composition and abundance in the macroinvertebrate community of a large river. American Midland Naturalist 149: 293–305.

    Article  Google Scholar 

  • Sugihara, G. & R. May, 1990. Application of fractals in ecology. Trends in Ecology & Evolution 5: 79–86.

    Article  CAS  Google Scholar 

  • Taniguchi, H., S. Nakato & M. Tokeshi, 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwater Biology 48: 718–728.

    Article  Google Scholar 

  • Thomaz, S., E. Dibble, L. Evangelista, J. Higuti & L. Bini, 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53: 358–367.

    Google Scholar 

  • Tokeshi, M. & S. Arakaki, 2012. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685: 27–47.

    Article  Google Scholar 

  • Tolonen, K. T., H. Hämäläinen, I. J. Holopainen, K. Mikkonen & J. Karjalainen, 2003. Body size and substrate association of littoral insects in relation to vegetation structure. Hydrobiologia 499: 179–190.

    Article  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2004. Habitat structural complexity mediates the foraging success of multiple predator species. Oecologia 141: 171–178.

    Article  PubMed  Google Scholar 

  • Warfe, D. M. & L. A. Barmuta, 2006. Habitat structural complexity mediates food web dynamics in a freshwater macrophyte community. Oecologia 150: 141–154.

    Article  PubMed  Google Scholar 

  • Warfe, D. M., L. A. Barmuta & S. Wotherspoon, 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117: 1764–1773.

    Article  Google Scholar 

  • Williamson, M. & J. Lawton, 1991. Fractal geometry of ecological habitats. In Bell, S., E. McCoy & H. Mushinsky (eds), Habitat Structure: The Physical Arrangement of the Objects in Space. Chapman and Hall, London: 69–86.

    Chapter  Google Scholar 

  • Wilzbach, M. A., K. W. Cummins & R. A. Knapp, 1988. Toward a functional classification of stream invertebrate drift. Verh Internat Verein Limnol 23: 1244–1254.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the landowner and the manager of Santa María del Arroyo farm for providing access to the study site. We thank the editor and two anonymous reviewers for their careful reading and constructive comments, who greatly improved this manuscript. This project was supported by the Universidad Nacional de Luján.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolás Ferreiro.

Additional information

Handling editor: Katya E. Kovalenko

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Photographs of Elodea, a) control and b) treated to simplify architecture. (TIFF 994 kb)

Online Resource 2

ANOVA results for macroinvertebrate density (N g−1) in all the experiments. (DOC 35 kb)

Online Resource 3

Relationship between log N and log L of macroinvertebrates from each species and predation level. (EPS 2083 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreiro, N., Feijoó, C., Giorgi, A. et al. Macroinvertebrates select complex macrophytes independently of their body size and fish predation risk in a Pampean stream. Hydrobiologia 740, 191–205 (2014). https://doi.org/10.1007/s10750-014-1953-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1953-y

Keywords

Navigation