Skip to main content
Log in

Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

An Erratum to this article was published on 18 November 2014

Abstract

Morpho-functional classifications of phytoplankton are increasingly used in ecological studies of different aquatic ecosystems. The aim was to compare three different classifications: (a) functional groups (FG); (b) morpho-functional groups (MFG); and (c) morphologically based functional groups (MBFG), and to detect how well can the biomass of phytoplankton groups based on different classifications be explained by environmental conditions of two different karstic lakes in the National Park Plitvice Lakes. Phytoplankton biomass in Lake Kozjak was lower than in Lake Prošće (total avg. 1.13 and 2.59 mg l−1, respectively). Several diatoms (Cyclotella spp., Discostella stelligera, Synedra sp., Ulnaria ulna var. acus) with Dinobryon divergens were dominant in Kozjak, while Prošće was characterized by Dinobryon sociale, D. divergens, Cryptomonas sp., Stephanodiscus sp. and Fragilaria crotonensis. The best results in describing the phytoplankton succession were obtained using MBFG approach although it is less sensitive in describing variability of individual descriptive algal groups in this environment than FG and MFG. Nonetheless, because of distinct differences among dominant phytoplankton groups in these systems, MBFG classification was shown to be applicable, as supported by statistical analyses. FG and MFG classifications showed a high level of similarity, thus proving to be applicable to deep karstic lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abonyi, A., M. Leitão, A. M. Lançon & J. Padisák, 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698: 233–249.

    Article  Google Scholar 

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.

    Google Scholar 

  • Arar, E. J., & G. B. Collins, 1997. U.S. Environmental Protection Agency method 445.0, in vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence, revision 1.2. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Office of Research and Development, Cincinnati.

  • Babinka, S., 2007. Multi-tracer study of Karst waters and lake sediments in Croatia and Bosnia-Herzegovina: Plitvice Lakes National Park and Bihac area [http://hss.ulb.uni-bonn.de/2007/1185/1185.htm]. Accessed 27 March 2013.

  • Barbosa, L. G., P. M. M. Barbosa & F. A. R. Barbosa, 2011. Vertical distribution of phytoplankton functional groups in a tropical shallow lake: driving forces on a diel scale. Acta Limnologica Brasiliensia 23: 63–73.

    Article  Google Scholar 

  • Barone, R., L. Naselli-Flores & S. Calvo, 1989. Fitoplancton e livello trofico del lago Biviere di Cesaro. Naturalista Siciliano 13: 1–22.

    Google Scholar 

  • Biondić, B., R. Biondić & H. Meaški, 2010. The conceptual hydrogeological model of the Plitvice Lakes. Geologia Croatica 63: 195–206.

    Google Scholar 

  • Bradbury, J. P., 1988. A climatic-limnologic model of diatom succession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. Journal of Paleolimnology 1: 115–131.

    Google Scholar 

  • Bukvić-Ternjej, I., M. Kerovec, Z. Mihaljević, V. Tavčar, M. Mrakovčić, & P. Mustafić, 2001. Copepod communities in karstic mediterranean lakes along the eastern Adriatic coast In Lopes, R. M., J. W. Reid, & C. E. F. Rocha (eds), Copepoda: Developments in Ecology, Biology and Systematics. Springer, Dordrecht: 325–333 [http://link.springer.com/chapter/10.1007/0-306-47537-5_26].

  • Camacho, A. & E. Vicente, 1998. Carbon photoassimilation by sharply stratified phototrophic communities at the chemocline of Lake Arcas (Spain). FEMS Microbiology Ecology 25: 11–12.

    Article  CAS  Google Scholar 

  • Caput, K. & A. Plenković-Moraj, 2000. Epiphytic diatoms on sawgrass (Cladium mariscus) in the karstic Plitvice Lakes, Croatia. Biologia, Bratislava 55: 343–350.

    Google Scholar 

  • Caroni, R., G. Free, A. Visconti & M. Manca, 2012. Phytoplankton functional traits and seston stable isotopes signature: a functional-based approach in a deep, subalpine lake, Lake Maggiore (N. Italy). Journal of Limnology 71: e8.

    Article  Google Scholar 

  • Clarke, K. R., & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. PRIMER-E, Plymouth: 190.

  • Clegg, M. R., S. C. Maberly & R. I. Jones, 2007. Behavioral response as a predictor of seasonal depth distribution and vertical niche separation in freshwater phytoplanktonic flagellates. Limnology and Oceanography 52: 441–455.

    Article  CAS  Google Scholar 

  • Cole, G. A., 1994. Textbook of Limnology. Waveland Press, Prospect Heights, Illinois.

    Google Scholar 

  • Dokulil, M. & C. Skolaut, 1986. Succession of phytoplankton in a deep stratifying lake: Mondsee, Austria. Hydrobiologia 138: 9–24.

    Article  Google Scholar 

  • Fogg, G. E., 1975. Algal Cultures and Phytoplankton Ecology. University of Wisconsin Press, Madison [http://www.ebay.com/ctg/Algal-Cultures-and-Phytoplankton-Ecology-G-E-Fogg-1975-Hardcover-/1158689]. Accessed 7 April 2013.

  • Forsström, L., 2006. Phytoplankton Ecology of the Subarctic Lakes in Finnish Lapland. University of Helsinki, Kilpisjärvi Biological Station.

    Google Scholar 

  • Gaedke, U., 1998. Functional and taxonomical properties of the phytoplankton community of large and deep Lake Constance: Interannual variability and response to reoligotrophication (1979-93). Archiv für Hydrobiologie, Special Issues Advanced Limnology 53: 119–141.

    CAS  Google Scholar 

  • Gligora, M., A. Plenković-Moraj, K. Kralj, I. Grigorszky & D. Peroš-Pucar, 2007. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia). Hydrobiologia 584: 337–346.

    Article  CAS  Google Scholar 

  • Graham, L. E., & L. W. Wilcox, 2000. Algae. Prentice Hall, London.

  • Gusev, E. S., 2008. Photosynthetic pigments of plankton in some karst lakes of central Russia. Inland Water Biology 1: 217–224.

    Article  Google Scholar 

  • Hall, R. I. & J. P. Smol, 1992. A weighted—averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology 27: 417–434.

    Article  CAS  Google Scholar 

  • Hillebrand, H., C. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hu, R., B. Han & L. Naselli-Flores, 2012. Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia 701: 219–233.

    Article  Google Scholar 

  • Hutchinson, G. E., 1967. Limnoplancton. In A treatise on Limnology, Vol. II. Wiley, New York.

  • Hutchinson, G. E. & H. Löffler, 1955. The thermal classification of lakes. Proceedings of the National Academy of Sciences of the United States of America 42(2): 84–86.

    Article  Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    Article  CAS  Google Scholar 

  • Jasprica, N., D. Hafner, M. Batistić & T. Kapetanović, 2005. Phytoplankton in three freshwater lakes in the Neretva River delta (Eastern Adriatic, NE Mediterranean). Nova Hedwigia 81: 37–54.

    Article  Google Scholar 

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in Shallow Danish Lakes. Canadian Journal of Fisheries and Aquatic Sciences 51: 1692–1699.

    Article  Google Scholar 

  • Kamjunke, N., T. Henrichs & U. Gaedke, 2007. Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. Journal of Plankton Research 29: 39–46.

    Article  CAS  Google Scholar 

  • Kapelj, J., S. Kapelj, & D. Singer, 2006. Study of anthropogenic pollution after the war and establishing of measures for protection of Plitvice National Park and Bihać Region. In: Final Report of Anthropol.Prot.

  • Kasperovičienė, J. & G. Vaikutienė, 2007. Long–term changes in diatom communities of phytoplankton and the surface sediments in the Curonian Lagoon (Lithuanian part). Transitional Waters Bulletin 1: 27–37.

    Google Scholar 

  • Katalinić, A., G. Zwicker, A. Brozincević, D. Peroš-Pucar, & J. Rubinić, 2008. Relation between hydrological characteristics and anthropogenic influence in the context of lake protection – case studies of Plitvice Lakes and Vrana Lake in Dalmatia (Croatia). In Morell, M., C. Popovska, V. Stojov, G. Kostofski, D. Dimitrov, R. Drobot, Z. Radic, A. Selenica (eds) Balwois 2008. Balkan Institute for Water and Envinronment, Skopje: 326–327.

  • Klaveness, D., 1988. Ecology of the Cryptomonadida – A First Review Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, New York: 105–133.

    Google Scholar 

  • Komárek, J., & V. Jankovská, 2001. Review of the Green Algal Genus Pediastrum; Implication for Pollenanalytical Research. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart [http://www.schweizerbart.de//publications/detail/isbn/9783443600358/Review_of_the_Green_Algal_Genus_Pediastrum_Implica]. Accessed 18 Dec 2013.

  • Krevs, A., & A. Kucinskiene, 2011. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania. Knowledge and Management of Aquatic Ecosystems 402(02): 02p102p12.

  • Kruk, C. & A. M. Segura, 2012. The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia 698: 191–202.

    Article  CAS  Google Scholar 

  • Kruk, C., N. Mazzeo, G. Lacerot & C. S. Reynolds, 2002. Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research 24: 901–912.

    Article  Google Scholar 

  • Kruk, C., V. L. de M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. S. Costa, M. Lürling, C. S. Reynolds, & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

  • Kruk, C., E. T. H. M. Peeters, E. H. Van Nes, V. L. de M. Huszar, L. S. Costa, & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limonology and Oceanography 56: 110–118.

  • Kümmerlin, R. E., 1998. Taxonomical response of the phytoplankton community of Upper Lake Constance (Bodensee-Obersee) to eutrophication and re-oligotrophication. Archiv für Hydrobiologie, Special Issues Advanced Limnology 53: 109–117.

    Google Scholar 

  • Lindenschmidt, K.-E. & I. Chorus, 1998. The effect of water column mixing on phytoplankton succession, diversity and similarity. Journal of Plankton Research 20: 1927–1951.

    Article  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution, and Systematics 39: 615–639.

    Article  Google Scholar 

  • Longhi, M. L. & B. E. Beisner, 2009. Environmental factors controlling the vertical distribution of phytoplankton in lakes. Journal of Plankton Research 31: 1195–1207.

    Article  CAS  Google Scholar 

  • Lund, J. W. G., C. Kipling & E. D. Cren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11: 143–170.

    Article  Google Scholar 

  • Mackay, A. W., R. W. Battarbee, R. J. Flower, D. Jewson, J. A. Lees, D. B. Ryves & M. Sturm, 2000. The deposition and accumulation of endemic planktonic diatoms in the sediments of Lake Baikal and an evaluation of their potential role in climate reconstruction during the Holocene. Terra Nostra 9: 34–48.

    Google Scholar 

  • Mackay, A. W., R. W. Battarbee, R. J. Flower, N. G. Granin, D. H. Jewson, D. B. Ryves & M. Sturm, 2003. Assessing the potential for developing internal diatom-based transfer functions for Lake Baikal. Limnology and Oceanography 48: 1183–1192.

    Article  Google Scholar 

  • Mackay, A. W., D. B. Ryves, R. W. Battarbee, R. J. Flower, D. Jewson, P. Rioual & M. Sturm, 2005. 1000 years of climate variability in central Asia: assessing the evidence using Lake Baikal (Russia) diatom assemblages and the application of a diatom-inferred model of snow cover on the lake. Global and Planetary Change 46: 281–297.

    Article  Google Scholar 

  • Madgwick, G., I. D. Jones, S. J. Thackeray, J. A. Elliott & H. J. Miller, 2006. Phytoplankton communities and antecedent conditions: high resolution sampling in Esthwaite Water. Freshwater Biology 51: 1798–1810.

    Article  Google Scholar 

  • Matoničkin, I., Z. Pavletić, V. Tavčar, & M. Krkac, 1971. Limnološka istraživanja reikotopa i fenomena potočne travertinizacije u Plitvičkim jezerima. Acta Botanica Croatica VII: 5–65.

  • McGill, B. J., B. J. Enquist, E. Weiher & M. Westoby, 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185.

    Article  Google Scholar 

  • Mieleitner, J., M. Borsuk, H.-R. Bürgi & P. Reichert, 2008. Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquatic Sciences 70: 30–46.

    Article  Google Scholar 

  • Miracle, M. R., E. Vicente & C. Pedrós-Alió, 1992. Biological studies of spanish meromictic and stratified karstic lakes. Limnetica 8: 59–77.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698: 147–159.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Pace, M. L., G. B. McManus & S. E. G. Findlay, 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnology and Oceanography 35: 795–808.

    Article  Google Scholar 

  • Padisák, J., 2004. Phytoplankton In O’Sullivan, P. E., & C. S. Reynolds (eds), The Lakes Handbook, Vol. 1. Blackwell Science Ltd, Oxford: 251–308, [http://onlinelibrary.wiley.com/doi/10.1002/9780470999271.ch10/summary].

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Article  Google Scholar 

  • Padisák, J., W. Scheffler, C. Sípos, P. Kasprzak, R. Koschel & L. Krienitz, 2003. Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie Beiheft Advances In Limnology 58: 135–155.

    Google Scholar 

  • Padisák, J., G. Borics, I. Grigorszky & É. Soróczki-Pintér, 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: The Assemblage Index. Hydrobiologia 553: 1–14.

    Article  Google Scholar 

  • Padisák, J., L. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Pereira, H. C., N. Allott, C. Coxon, O. Naughton, P. Johnston & L. Gill, 2011. Phytoplankton of turloughs (seasonal karstic Irish lakes). Journal of Plankton Research 33: 385–403.

    Article  CAS  Google Scholar 

  • Plenković-Moraj, A., N. Horvatinčić & B. Primc-Habdija, 2002. Periphyton and its role in tufa deposition in karstic waters (Plitvice Lakes, Croatia). Biologia, Bratislava 57: 423–432.

    Google Scholar 

  • Pollingher, U., 1988. Freshwater Armored Dinoflagellates: Growth, Reproduction Strategies, and Population Dynamics Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 134–174.

  • Reynolds, C. S., 1986. Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 138: 43–64.

    Article  Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.

  • Reynolds, C. S., 1993. Scales of disturbance and their role in plankton ecology. Hydrobiologia 249: 157–171.

    Article  Google Scholar 

  • Reynolds, C. S., 1994. Ecosystem exploitation, sustainability and biodiversity: Are they compatible? Freshwater Forum 4: 189–202.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Oldendorf/Luhe, Germany.

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? [http://www.ingentaconnect.com/content/klu/hydr/1998/00000369/e0020001/00159467]. Accessed 15 Feb 2014.

  • Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S. & A. E. Irish, 1997. Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in-situ growth rates. Hydrobiologia 349: 5–17.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., J. Padisak & I. Kobor, 1993. A localized bloom of Dinobryon sociale in Lake Balaton: some implications for the perception of patchiness and the maintenance of species richness. Abstracta Botanica 17: 251–260.

    Google Scholar 

  • Reynolds, C. S., V. L. de M. Huszar, C. Kruk, L. Naselli-Flores, & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

  • Rodrigo, M. A., E. Vicente & M. R. Miracle, 2000. The physical, chemical and biological characteristics of the holomictic sulphated Lake Arcas-2 (Cuenca, Spain). Hydrobiologia 418: 153–168.

    Article  CAS  Google Scholar 

  • Rott, D. E., 1981. Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie 43: 34–62.

    Google Scholar 

  • Rühland, K. M., A. M. Paterson, K. Hargan, A. Jenkin, B. J. Clark & J. P. Smol, 2010. Reorganization of algal communities in the Lake of the Woods (Ontario, Canada) in response to turn-of-the-century damming and recent warming. Limnology and Oceanography 55: 2433–2451.

    Article  Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-Functional Groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2012. Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia 698: 375–384.

    Article  Google Scholar 

  • Sas, H., 1989. Lake Restoration by Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations. Academia Verlag Richarz, St. Augustin, Germany [http://onlinelibrary.wiley.com/doi/10.1002/iroh.19910760211/abstract]. Accessed 23 Jan 2014.

  • Scheffler, W. & J. Padisák, 2000. Stephanocostis chantaicus (Bacillariophyceae): morphology and population dynamics of a rare centric diatom growing in winter under ice in the oligotrophic Lake Stechlin, Germany. Archiv für Hydrobiologie Supplementband, Algological studies 133: 49–69.

    CAS  Google Scholar 

  • Seip, K. L. & C. S. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limonology and Oceanography 40: 589–597.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic event in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sournia, A., 1978. Phytoplankton Manual. Unesco, Paris.

    Google Scholar 

  • Srdoč, D., N. Horvatinčić, B. Obelić, I. Krajcar Bronić, & A. Sliepčević, 1985. Procesi taloženja kalcita u krškim vodama s posebnim osvrtom na Plitvička jezera. Krš Jugoslavije = Carsus Iugoslaviae 11: 101–204.

  • Srdoč, D., B. Obelić, N. Horvatinčić, I. Krajcar Bronić, E. Marčenko, J. Merkt, H. K. Wong & A. Sliepčević, 1986. Radiocarbon dating of lake sediment from two karst lakes in Yugoslavia. Radiocarbon 28: 495–502.

    Google Scholar 

  • Stančić, Z., K. Žganec & S. Gottstein, 2010. Marshland vegetation of Plitvice Lakes National Park (Croatia). Candollea 65: 147–167.

    Google Scholar 

  • Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.

    Article  Google Scholar 

  • Tardio, M., M. Tolotti, G. Novarino & M. Cantonati, 2003. Ecological and taxonomic observations on the flagellate algae characterising four years of enclosure experiments in Lake Tovel (Southern Alps). Hydrobiologia 502: 285–296.

    Article  Google Scholar 

  • Ter Braak, C. J. F., & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.

  • Tolotti, M., F. Corradini, A. Boscaini & D. Calliari, 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578: 147–156.

    Article  Google Scholar 

  • Tolotti, M., H. Thies, U. Nickus & R. Psenner, 2012. Temperature modulated effects of nutrients on phytoplankton changes in a mountain lake. Hydrobiologia 698: 61–75.

    Article  CAS  Google Scholar 

  • Tomec, M., Z. Teskeredžić, E. Teskeredžić & M. Hacmanjek, 1996. Fitoplankton Vranskog jezera na otoku Cresu. Ribarstvo 54: 105–113.

    Google Scholar 

  • Tomec, M., E. Teskeredžić & Z. Teskeredžić, 2009. Dinamika fitoplanktona u jezeru Vrana (Cres). Ribarstvo 67: 101–112.

    Google Scholar 

  • Unrein, F., I. O’Farrell, I. Izaguirre, R. Sinistro, M. dos S. Afonso, & G. Tell, 2010. Phytoplankton response to pH rise in a N-limited floodplain lake: relevance of N2-fixing heterocystous cyanobacteria. Aquatic Sciences 72: 179–190.

  • Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereiningung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Valadez, F., G. Rosiles-González, A. Almazán-Becerril & M. Merino-Ibarra, 2013. Planktonic cyanobacteria of the tropical karstic lake Lagartos from the Yucatan Peninsula, Mexico. Revista de biología tropical 61: 971–979.

    Article  PubMed  Google Scholar 

  • Violle, C., D. R. Nemergut, Z. Pu & L. Jiang, 2011. Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14: 782–787.

    Article  PubMed  Google Scholar 

  • Wang, L., Q. Cai, Y. Xu, L. Kong, L. Tan & M. Zhang, 2011. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquatic Ecology 45: 197–212.

    Article  Google Scholar 

  • Watson, S. B., T. Satchwill, E. Dixon & E. McCauley, 2001. Under-ice blooms and source-water odour in a nutrient-poor reservoir: biological, ecological and applied perspectives. Freshwater Biology 46: 1553–1567.

    Article  CAS  Google Scholar 

  • Webb, C. O., D. D. Ackerly, M. A. McPeek & M. J. Donoghue, 2002. Phylogenies and Community Ecology. Annual Review of Ecology and Systematics 33: 475–505.

    Article  Google Scholar 

  • Weithoff, G., 2003. The concepts of “plant functional types” and “functional diversity” in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.

    Article  Google Scholar 

  • Werner, D., 1977. The Biology of Diatoms. University of California Press, Berkeley.

    Google Scholar 

  • Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B: Biological Sciences 276: 427–435.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xiao, L.-J., T. Wang, R. Hu, B. Han, S. Wang, X. Qian & J. Padisák, 2011. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Research 45: 5099–5109.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Croatian Ministry of Science, Education and Sports for providing financial support (project 119-0000000-1229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žutinić Petar.

Additional information

Handling editor: Boping Han

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petar, Ž., Marija, G.U., Koraljka, K.B. et al. Morpho-functional classifications of phytoplankton assemblages of two deep karstic lakes. Hydrobiologia 740, 147–166 (2014). https://doi.org/10.1007/s10750-014-1950-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-1950-1

Keywords

Navigation