Skip to main content
Log in

Factors driving the metabolism of two north temperate ponds

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Two beaver ponds in central New York State, one in a forested and one in an agricultural setting, were studied to determine the influence of nutrient enrichment on metabolic activity in small, shallow north temperate lentic systems with extensive littoral zones. Metabolic activity was determined from every 15-min oxygen measurements during the growing season utilizing a sonde and wind, temperature, and depth data. The agricultural Timmerman Pond was more enriched in phosphorus and nitrogen than the forested Hoxie Gorge Pond, a factor likely driving the greater gross primary production (GPP) and more positive net ecosystem production (NEP) measured in Timmerman. Average daily GPP was over 3X greater for the more enriched pond and seasonal average NEP was positive in the enriched pond while negative for the forested pond. Daily GPP and NEP were positively correlated (P < 0.001) with daily solar radiation at both ponds. The active metabolism of small ponds, the most abundant size class of lentic systems, further confirms the important role of inland waters in the transformation of carbon on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • American Public Health Association (APHA), American Water Works Association, & Water Pollution Control Federation, 1985. Standard methods for the examination of water and wastewater, 16th ed. APHA, Washington, DC.

    Google Scholar 

  • Arango, C. P., J. L. Tank, L. T. Johnson & S. K. Hamilton, 2008. Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use. Limnology and Oceanography 53: 2558–2572.

    Article  CAS  Google Scholar 

  • Batt, R. D. & S. R. Carpenter, 2012. Free-water lake metabolism: addressing noisy time series with a Kalman filter. Limnology and Oceanography: Methods 10: 20–30.

    Article  CAS  Google Scholar 

  • Binkley, D., G. G. Ice, J. Kaye & C. A. Williams, 2004. Nitrogen and phosphorus concentrations in forest streams of the United States. Journal of the American Water Resources Association 40: 1277–1291.

    Article  CAS  Google Scholar 

  • Boucher, G., J. Clavier & C. Garrigue, 1994. Oxygen and carbon dioxide fluxes at the water-sediment interface of a tropical lagoon. Marine Ecology Progress Series 107: 185–193.

    Article  CAS  Google Scholar 

  • Carignan, R., P. Dolors & C. Vis, 2000. Planktonic production and respiration in oligotrophic Shield lakes. Limnology and Oceanography 45: 189–199.

    Article  Google Scholar 

  • Cole, J. J. & N. F. Caraco, 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography 43: 647–656.

    Article  CAS  Google Scholar 

  • Cole, J. J., M. L. Pace, S. R. Carpenter & J. F. Kitchell, 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations. Limnology and Oceanography 45: 1718–1730.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middleburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Collen, P. & R. J. Gibson, 2001. The general ecology of beavers (Castor spp.), as related to their influence on stream systems and riparian habitats, and the subsequent effects on fish: a review. Reviews in Fish Biology and Fisheries 10: 439–461.

    Article  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middleburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • Duarte, C. M. & S. Agusti, 1998. The CO2 balance of unproductive aquatic systems. Science 281: 234–236.

    Article  PubMed  CAS  Google Scholar 

  • Grande, K. D. P., J. L. Williams, J. Marra, D. A. Purdie, K. Heinemann, P. W. Eppley & M. L. Bender, 1989. Primary production in the North Pacific Gyre: a comparison of rates determined by the 14C, O2 concentration and 18O methods. Deep Sea Research 36: 1621–1634.

    Article  CAS  Google Scholar 

  • Hanson, P. C., D. L. Bade, S. R. Carpenter & T. K. Kratz, 2003. Lake metabolism: relationships with dissolved organic carbon and phosphorus. Limnology and Oceanography 48: 1112–1119.

    Article  CAS  Google Scholar 

  • Hodkinson, I. D., 1975. Energy flow and organic matter decomposition in an abandoned beaver pond ecosystem. Oecologia 21: 131–139.

    Article  Google Scholar 

  • Hsu, S. A., E. A. Meindl & D. B. Gilhousen, 1994. Determining the power-law wind-profile exponent under near-neutral stability conditions at sea. Journal of Applied Meteorology 33: 757–765.

    Article  Google Scholar 

  • Jahne, B., K. O. Munnich, R. Bosinger, A. Dutz, W. Huber & P. Libner, 1987. On parameters influencing air-water gas exchange. Journal of Geophysical Research 92: 1937–1949.

    Article  Google Scholar 

  • Jenkins, S. H. & P. E. Busher, 1979. Castor canadensis. Mammalian Species 120: 1–9.

    Article  Google Scholar 

  • Klotz, R. L., 1998. Influence of beaver ponds on the phosphorus concentration of stream water. Canadian Journal of Fisheries and Aquatic Sciences 55: 1228–1235.

    Article  CAS  Google Scholar 

  • Klotz, R. L., 2010. Reduction of high nitrate concentrations in a Central New York State stream impounded by beaver. Northeastern Naturalist 17: 349–356.

    Article  Google Scholar 

  • Kohler, M. A. & L. H. Parmele, 1967. Generalized estimates of free-water evaporation. Water Resources Research 3: 997–1005.

    Article  Google Scholar 

  • Lacoul, P. & B. Freedman, 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89–136.

    Article  Google Scholar 

  • Lauster, G. H., P. C. Hanson & T. K. Kratz, 2006. Gross primary production and respiration differences among littoral and pelagic habitats in northern Wisconsin lakes. Canadian Journal of Fisheries and Aquatic Sciences 63: 1130–1141.

    Article  Google Scholar 

  • Muller-Schwarze, D., 2011. The Beaver: its life and impact, 2nd ed. Comstock, Ithaca, NY: 216.

    Google Scholar 

  • Naiman, R. J., J. M. Melillo & J. E. Hobbie, 1986. Ecosystem alteration of boreal forest streams by beaver (Castor canadensis). Ecology 67: 1254–1269.

    Article  Google Scholar 

  • Odum, H. T., 1957. Trophic structure and productivity of Silver Springs, Florida. Ecological Monographs 27: 55–112.

    Article  Google Scholar 

  • Parker, J. D., C. C. Caudill & M. E. Hay, 2007. Beaver herbivory on aquatic plants. Oecologia 151: 616–625.

    Article  PubMed  Google Scholar 

  • Pritchard, G. & H. A. Hall, 1971. An introduction to the biology of craneflies in a series of abandoned beaver ponds, with an account of the life cycle of Tipula sacra Alexander (Diptera; Tipulidae). Canadian Journal of Zoology 49: 467–482.

    Article  Google Scholar 

  • Songster-Alpin, M. S. & R. L. Klotz, 1995. A comparison of electron transport system activity in stream and beaver pond sediments. Canadian Journal of Fisheries and Aquatic Sciences 52: 1318–1326.

    Article  CAS  Google Scholar 

  • Staehr, P. A. & K. Sand-Jensen, 2007. Temporal dynamics and regulation of lake metabolism. Limnology and Oceanography 52: 108–120.

    Article  CAS  Google Scholar 

  • Staehr, P. A., D. Bade, M. C. Van de Bogert, G. R. Koch, C. Williamson, P. Hanson, J. J. Cole & T. Kratz, 2010a. Lake metabolism and the diel oxygen technique: State of the science. Limnology and Oceanography: Methods 8: 628–644.

    Article  CAS  Google Scholar 

  • Staehr, P. A., K. Sand-Jensen, A. L. Raun, B. Nilsson & J. Kidmose, 2010b. Drivers of metabolism and net heterotrophy in contrasting lakes. Limnology and Oceanography 55: 817–830.

    Article  CAS  Google Scholar 

  • Tranvik, L. J. et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.

    Google Scholar 

  • Van de Bogert, M. C., S. R. Carpenter, J. J. Cole & M. L. Pace, 2007. Assessing pelagic and benthic metabolism using free water measurements. Limnology and Oceanography: Methods 5: 145–155.

    Article  Google Scholar 

  • Wanninkhoff, R., 1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97: 7373–7382.

    Article  Google Scholar 

Download references

Acknowledgments

Laurie Klotz provided invaluable assistance with data analysis; and Linda Anderson, Victoria Benson, Jacquelyn Getman, David Kalb, Charles Muirhead, Laura Platt, and Kevin Slade provided field assistance. I thank James McKenna and two anonymous reviewers for beneficial critiques of the manuscript. Financial support was provided by the United States Department of Education (Award Number U215K050452) and the State University of New York College at Cortland Undergraduate Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Lawrence Klotz.

Additional information

Handling editor: John M. Melack

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotz, R.L. Factors driving the metabolism of two north temperate ponds. Hydrobiologia 711, 9–17 (2013). https://doi.org/10.1007/s10750-013-1450-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1450-8

Keywords

Navigation