Skip to main content

Advertisement

Log in

Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The decomposition rate of plant litter is important for the carbon cycle. Element stoichiometry and hardly degradable carbon compounds are main factors controlling the decomposition rate of plant litter. Recent research has linked these factors to silicon availability during plant growth, but no research focused on the effect of silicon on litter decomposition. We therefore conducted a batch experiment to assess the effect of silicon availability to plants on litter degradation, nutrient release and multi elemental stoichiometry. Experiments were conducted in the presence or absence of invertebrate shredders (Gammarus pulex). We show that nutrient content (affected by silicon availability during plant growth) has a strong impact on nutrient turnover, while DOC, N, and Mn were mainly controlled by invertebrate feeding. The carbon turnover during microbial litter decay was strongly influenced by the silicon availability during plant growth, with quicker potential C turnover of litter with higher silicon content. In both Si-rich and Si-poor litter, feeding by invertebrate shredders positively impacted turnover rates, but effects were less pronounced in Si-rich litter. It can be concluded that silicon availability in wetlands dominated by reed plays an important role in carbon sequestration, nutrient cycling, and remobilization during aquatic litter decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts, R., 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3): 439–449.

    Article  Google Scholar 

  • Aerts, R. & H. deCaluwe, 1997. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78(1): 244–260.

    Google Scholar 

  • Amon, R. M. W. & R. Benner, 1996. Bacterial utilization of different size classes of dissolved organic matter. Limnology & Oceanography 41(1): 41–51.

    Article  CAS  Google Scholar 

  • Bärlocher, F. & M. A. S. Graça, 2005. Total Phenolics. In Graça, M. A. S., F. Bärlocher & M. O. Gessner (eds), Methods to study litter decomposition: a practical guide. Springer, Berlin: 97–100.

    Chapter  Google Scholar 

  • Berg, B. & C. McClaugherty, 2003. Plant Litter. Springer, Berlin.

    Book  Google Scholar 

  • Dietrich, D., S. Hinke, W. Baumann, R. Fehlhaber, E. Baucher, G. Ruhle, O. Wienhaus & G. Marx, 2003. Silica accumulation in Triticum aestivum L. and Dactylis glomerata L. Analytical and Bioanalytical Chemistry 376(3): 399–404.

    PubMed  CAS  Google Scholar 

  • DIN-EN-1484, 1997. Anleitung zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs. Deutsches Institut für Normung, Berlin, 14.

  • DIN-EN-13805, 2002. Lebensmittel – Bestimmung von Elementspuren – Druckaufschluss, Deutsche Fassung. Deutsches Institut für Normung, Berlin, 11.

  • DIN-EN-ISO-17294-2, 2004. Wasserbeschaffenheit – Anwendung der induktiv gekoppelten Plasma-Massenspektrometrie (ICP-MS) – Teil 2: Bestimmung von 62 Elementen (ISO 17294-2:2003), Deutsche Fassung EN ISO 17294-2:2004. Deutsches Institut für Normung, Berlin, 24.

  • DIN-ISO-10694, 1995. Soil quality – Determination of organic and total carbon after dry combustion (elementary analysis) (ISO 10694:1995). Deutsches Institut für Normung, Berlin, 12.

  • Epstein, E., 2009. Silicon: its manifold roles in plants. Annals of Applied Biology 155(2): 155–160.

    Article  CAS  Google Scholar 

  • Fauteux, F., W. Remus-Borel, J. G. Menzies & R. R. Belanger, 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249(1): 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Fraysse, F., O. S. Pokrovsky, J. Schott & J. D. Meunier, 2009. Surface chemistry and reactivity of plant phytoliths in aqueous solutions. Chemical Geology 258(3–4): 197–206.

    Article  CAS  Google Scholar 

  • Frost, P. C. & N. C. Tuchman, 2005. Nutrient release rates and ratios by two stream detritivores fed leaf litter grown under elevated atmospheric CO2. Archiv für Hydrobiologie 163(4): 463–477.

    Article  CAS  Google Scholar 

  • Gessner, M. O. & E. Chauvet, 1994. Importance of stream microfungi in controlling breakdown rates of leaf-litter. Ecology 75(6): 1807–1817.

    Article  Google Scholar 

  • Gessner, M. O., E. Chauvet & M. Dobson, 1999. A perspective on leaf litter breakdown in streams. Oikos 85(2): 377–384.

    Article  Google Scholar 

  • Gessner, M. O., B. Schieferstein, U. Müller, S. Barkmann & U. A. Lenfers, 1996. A partial budget of primary organic carbon flows in the littoral zone of a hardwater lake. Aquatic Botany 55(2): 93–105.

    Article  Google Scholar 

  • Gessner, M. O., C. M. Swan, C. K. Dang, B. G. McKie, R. D. Bardgett, D. H. Wall & S. Hattenschwiler, 2010. Diversity meets decomposition. Trends in Ecology & Evolution 25(6): 372–380.

    Article  Google Scholar 

  • Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams – A review. International Review of Hydrobiology 86(4–5): 383–393.

    Article  Google Scholar 

  • Güsewell, S. & M. O. Gessner, 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology 23(1): 211–219.

    Article  Google Scholar 

  • Han, M. Y., L. X. Zhang, C. H. Fan, L. H. Liu, L. S. Zhang, B. Z. Li & A. K. Alva, 2011. Release of nitrogen, phosphorus, and potassium during the decomposition of apple (Malus domestica) leaf litter under different fertilization regimes in Loess Plateau. China. Soil Science and Plant Nutrition 57(4): 549–557.

    Article  CAS  Google Scholar 

  • Helmisaari, H. S., 1995. Nutrient cycling in Pinus-sylvestris stands in eastern Finland. Plant Soil 168: 327–336.

    Article  Google Scholar 

  • Hieber, M. & M. O. Gessner, 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83(4): 1026–1038.

    Article  Google Scholar 

  • Hietz, P., 1992. Decomposition and nutrient dynamics of reed (Phragmites australis (Cav) Trin ex Steud) litter in lake Neusiedl. Austria. Aquatic Botany 43(3): 211–230.

    Article  CAS  Google Scholar 

  • Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo & G. Woodward, 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54(5): 957–970.

    Article  CAS  Google Scholar 

  • Holstein, J. M. & C. Hensen, 2010. Microbial mediation of benthic biogenic silica dissolution. Geo-Marine Letters 30(5): 477–492.

    Article  CAS  Google Scholar 

  • Knowles, R., 1982. Denitrification. Microbiol Rev 46(1): 43–70.

    PubMed  CAS  Google Scholar 

  • Kominkova, D., K. A. Kuehn, N. Busing, D. Steiner & M. O. Gessner, 2000. Microbial biomass, growth, and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquatic Microbial Ecology 22(3): 271–282.

    Article  Google Scholar 

  • Lucas, Y., 2001. The role of plants in controlling rates and products of weathering: importance of biological pumping. Annual Review of Earth and Planetary Sciences 29: 135–163.

    Article  CAS  Google Scholar 

  • Massey, F. P. & S. E. Hartley, 2009. Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. Journal of Animal Ecology 78(1): 281–291.

    Article  PubMed  Google Scholar 

  • McClaugherty, C. & B. Berg, 1987. Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia 30(2): 101–112.

    CAS  Google Scholar 

  • Redfield, A. C., 1958. The biological control of chemical factors in the environment. American Scientist 46(3): 205–221.

    CAS  Google Scholar 

  • Rimer, J. D., R. F. Lobo & D. G. Vlachos, 2005. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations. Langmuir 21(19): 8960–8971.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, J., A. Weiske, M. Mkandawire & E. G. Dudel, 2010. Invertebrates control metals and arsenic sequestration as ecosystem engineers. Chemosphere 79(2): 169–173.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, J., C. Brackhage, M. Mkandawire & G. Dudel, 2011. Metal/metalloid accumulation/remobilization during aquatic litter decomposition in freshwater: a review. Science of the Total Environment 409(23): 4891–4898.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, J., C. Brackhage & E. Dudel, 2012a. Silicon availability changes structural carbon ratio and phenol content of grasses. Environmental and Experimental Botany 77(3): 283–287.

    Article  CAS  Google Scholar 

  • Schaller, J., C. Brackhage, M. O. Gessner, E. Bäuker & E. Gert Dudel, 2012b. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biology 14: 392–396.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, J., C. Brackhage, S. Paasch, E. Brunner, E. Bäucker & E. G. Dudel, 2013. Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Science of the Total Environment 442: 6–9.

    Article  PubMed  CAS  Google Scholar 

  • Smith, V. H., 2002. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek 81(1–4): 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Struyf, E. & D. J. Conley, 2009. Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment 7(2): 88–94.

    Article  Google Scholar 

  • Struyf, E., S. Van Damme, B. Gribsholt, K. Bal, O. Beauchard, J. J. Middelburg & P. Meire, 2007. Phragmites australis and silica cycling in tidal wetlands. Aquatic Botany 87(2): 134–140.

    Article  CAS  Google Scholar 

  • Tessier, A., D. Fortin, N. Belzile, R. R. DeVitre & G. G. Leppard, 1996. Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements. Geochimica et Cosmochimica Acta 60(3): 387–404.

    Article  CAS  Google Scholar 

  • Tiegs, S. D., F. D. Peter, C. T. Robinson, U. Uehlinger & M. O. Gessner, 2008. Leaf decomposition and invertebrate colonization responses to manipulated litter quantity in streams. Journal of the North American Benthological Society 27(2): 321–331.

    Article  Google Scholar 

  • Van Soest, P. J., 1963. Use of detergents in analysis of fibrous feeds. 2. A rapid method for determination of fiber and lignin. Journal of the Association of Official Agricultural Chemists 46(5): 829–835.

    Google Scholar 

  • Wainwright, M., K. AlWajeeh & S. J. Grayston, 1997. Effect of silicic acid and other silicon compounds on fungal growth in oligotrophic and nutrient-rich media. Mycological Research 101: 933–938.

    Article  CAS  Google Scholar 

  • Welton, J. S., 1979. Life-history and production of the amphipod Gammarus pulex in a Dorset chalk stream. Freshwater Biology 9: 263–275.

    Article  Google Scholar 

  • Whang, S. S., K. Kim & W. M. Hess, 1998. Variation of silica bodies in leaf epidermal long cells within and among seventeen species of Oryza (Poaceae). American Journal of Botany(4): 461–466.

    Article  PubMed  CAS  Google Scholar 

  • Windham, L. & L. A. Meyerson, 2003. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26(2B): 452–464.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. T. Pust for laboratory and field assistance, Mrs. R. Schulze at the Institute of Bioanalytical Chemistry, Dresden University of Technology, for ICP-OES measurements and Mr. A. Weiske for all other measurements. Eric Struyf would like to thank FWO (Research Foundation Flanders) for personal post-doc funding. Furthermore, Eric Struyf acknowledges BELSPO for funding IAP project SOGLO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Schaller.

Additional information

Handling editor: Luigi Naselli-Flores

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, J., Struyf, E. Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709, 201–212 (2013). https://doi.org/10.1007/s10750-013-1449-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1449-1

Keywords

Navigation