Skip to main content

Advertisement

Log in

Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The mean cell sizes of microalgae vary in relation to the abiotic factors, such as nutrients, temperature, or water transparency. This study focused on the community cell size of desmids and diatoms, two dominant groups of the peatland phytobenthos. Forty samples from various temperate European peatlands were investigated. The species composition and the species richness were controlled mainly by the pH levels. Purely spatial factors also significantly affected the species composition. Interestingly, diatoms were more strongly geographically restricted than desmids. The spatial control of the species composition was limited mostly to the large taxa, which indicated that dispersal limitation may be an important structuring factor for phytobenthos at a regional scale. The mean cell sizes of desmids were related to the ombro-minerotrophic gradient, pH, and Ca concentration. Acidic, ombrotrophic bogs typically contained small cells, whereas minerotrophic fens had larger desmids. By contrast, the diatom size structure did not depend on the ombro-minerotrophic gradient. Thus, the cell sizes of desmids in peatlands may be used as a proxy for important environmental processes, such as transition from minerotrophy to ombrotrophy, or acidification, whereas diatoms did not primarily respond to these processes and their size structure is driven by different factors, such as conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Bedford, B., M. R. Walbridge & A. Aldous, 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–2169.

    Article  Google Scholar 

  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Article  Google Scholar 

  • Bragazza, L. & R. Gerdol, 2002. Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands? Journal of Vegetation Science 13: 473–482.

    Article  Google Scholar 

  • Bridgham, S. D., J. Pastor, J. A. Janssens, C. Chapin & T. J. Malterer, 1996. Multiple limiting gradients in peatlands: a call for a new paradigm. Wetlands 16: 45–65.

    Article  Google Scholar 

  • Bridgham, S. D., K. Updegraff & J. Pastor, 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79: 1545–1561.

    Article  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2004. Multimodel inference. Understanding AIC and BIC in model selection. Sociological Methods & Research 33: 261–304.

    Article  Google Scholar 

  • Cattaneo, A., T. Kerimian, M. Roberge & J. Marty, 1997. Periphyton distribution and abundance on substrata of different size along a gradient of stream trophy. Hydrobiologia 354: 101–110.

    Article  CAS  Google Scholar 

  • Coesel, P. F. M., 1982. Structural characteristics and adaptations of desmid communities. Journal of Ecology 70: 163–177.

    Article  Google Scholar 

  • Coesel, P. F. M. & J. Meesters, 2007. Desmids of the Lowlands. KNNV Publishing, Zeist.

    Google Scholar 

  • De Nicola, D. N., E. De Eyto, A. Wemaere & K. Irvine, 2006. Periphyton response to nutrient addition in 3 lakes of different benthic productivity. Journal of the North American Benthological Society 25: 616–631.

    Article  Google Scholar 

  • Evans, K. M., V. A. Chepurnov, H. J. Sluiman, S. J. Thomas, B. M. Spears & D. G. Mann, 2009. Highly differentiated populations of the freshwater diatom Sellaphora capitata suggest limited dispersal and opportunities for allopatric speciation. Protist 160: 386–396.

    Article  PubMed  Google Scholar 

  • Falasco, E. & F. Bona, 2011. Diatom community biodiversity in an Alpine protected area: a study in the Maritime Alps Natural Park. Journal of Limnology 70: 157–167.

    Article  Google Scholar 

  • Finkel, Z. V., C. J. Vaillancourt, A. J. Irwin, E. D. Reavie & J. P. Smol, 2009. Environmental control of diatom community size structure varies across aquatic ecosystems. Proceedings of the Royal Society of London Series B: Biological Sciences 276: 1627–1634.

    Article  PubMed  CAS  Google Scholar 

  • Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.

    Article  CAS  Google Scholar 

  • Friebele, E. S., D. L. Correll & M. A. Faust, 1978. Relationship between phytoplankton cell size and the rate of orthophosphate uptake: in situ observations of an estuarine population. Marine Biology 45: 39–52.

    Article  CAS  Google Scholar 

  • Gross, W., 2000. Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433: 31–37.

    Article  CAS  Google Scholar 

  • Hájek, M., M. Horsák, P. Hájková & D. Dítě, 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Heino, J. & J. Soininen, 2006. Regional occupancy in unicellular eukaryotes: a reflection of niche breadth, habitat availability or size-related dispersal capacity? Freshwater Biology 51: 672–685.

    Article  Google Scholar 

  • Heino, J., L. M. Bini, S. M. Karjalainen, H. Mykrä, J. Soininen, L. C. G. Vieira & J. A. F. Diniz-Filho, 2010. Geographical patterns of micro-organismal community structure: are diatoms ubiquitously distributed across boreal streams? Oikos 119: 129–137.

    Article  Google Scholar 

  • Irwin, A. J., Z. V. Finkel, O. M. E. Schofield & P. G. Falkowski, 2006. Scaling-up from nutrient physiology to the size-structure of phytoplankton communities. Journal of Plankton Research 28: 459–471.

    Article  Google Scholar 

  • Kellogg, L. E. & S. D. Bridgham, 2003. Phosphorus retention and movement across an ombrotrophic-minerotrophic peatland gradient. Biogeochemistry 63: 299–315.

    Article  CAS  Google Scholar 

  • Key, T., A. McCarthy, D. A. Campbell, C. Six, S. Roy & Z. V. Finkel, 2010. Cell size trade-offs govern light exploitation strategies in marine phytoplankton. Environmental Microbiology 12: 95–104.

    Article  PubMed  CAS  Google Scholar 

  • Lavoie, I., S. Campeau, M. A. Fallu & P. J. Dillon, 2006. Diatoms and biomonitoring: should cell size be accounted for? Hydrobiologia 573: 1–16.

    Article  CAS  Google Scholar 

  • Lavoie, I., J. Lento & A. Morin, 2010. Inadequacy of size distributions of stream benthic diatoms for environmental monitoring. Journal of the North American Benthological Society 29: 586–601.

    Article  Google Scholar 

  • Lederer, F. & L. Soukupová, 2002. Biodiversity and ecology of algae in mountain bogs (Bohemian forest, Central Europe). Algological Studies 144: 151–183.

    Google Scholar 

  • Legendre, P. & M. J. Anderson, 1999. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographs 69: 1–24.

    Article  Google Scholar 

  • Litchman, E., C. A. Klausmeier & K. Yoshiyama, 2009. Contrasting size evolution in marine and freshwater diatoms. Proceedings of the National Academy of Sciences 106: 2665–2670.

    Article  CAS  Google Scholar 

  • Mataloni, G., 1999. Ecological studies on algal communities from Tierra del Fuego peat bogs. Hydrobiologia 391: 157–171.

    Article  Google Scholar 

  • Morán, X. A. G., Á. López-Urrutia, A. Calvo-Díaz & W. K. W. Li, 2010. Increasing importance of small phytoplankton in a warmer ocean. Global Change Biology 16: 1137–1144.

    Article  Google Scholar 

  • Moss, B., 1973. The influence of environmental factors on the distribution of freshwater algae: an experimental study: II. The role of pH and the carbon dioxide-bicarbonate system. Journal of Ecology 61: 157–177.

    Article  CAS  Google Scholar 

  • Neustupa, J., K. Černá & J. Šťastný, 2009. Diversity and morphological disparity of desmid assemblages in Central European peatlands. Hydrobiologia 630: 243–256.

    Article  Google Scholar 

  • Neustupa, J., K. Černá, & J. Šťastný, 2011a. The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodiversity and Conservation 20: 1695–1711.

    Google Scholar 

  • Neustupa, J., J. Šťastný, K. Nemjová, P. Mazalová, E. Goodyer, A. Poulíčková & P. Škaloud, 2011b. A novel, combined approach to assessing species delimitation and biogeography within the well-known desmid species Micrasterias fimbriata and M. rotata (Desmidiales, Steptophyta). Hydrobiologia 667: 223–239.

    Article  CAS  Google Scholar 

  • Neustupa, J., K. Černá & J. Šťastný, 2012. Spatio-temporal community structure of peat bog benthic desmids on a microscale. Aquatic Ecology 46: 229–239.

    Article  Google Scholar 

  • Nováková, S., 2002. Algal flora of subalpine peat bog pools in the Krkonoše Mts. Preslia 74: 45–56.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2011. vegan: Community Ecology Package. R package version 2.0-0 [available on Internet at http://CRAN.R-project.org/package=vegan].

  • Passy, S. I., 2007. Differential cell size optimization strategies produce distinct diatom richness–body size relationships in stream benthos and plankton. Journal of Ecology 95: 745–754.

    Article  Google Scholar 

  • Peres-Neto, P. R. & D. A. Jackson, 2001. How well do multivariate data sets match? The robustness and flexibility of a Procrustean superimposition approach over the Mantel test. Oecologia 129: 169–178.

    Article  Google Scholar 

  • Peres-Neto, P. R., P. Legendre, S. Dray & D. Borcard, 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87: 2614–2625.

    Article  PubMed  Google Scholar 

  • Poulíčková, A., J. Veselá, J. Neustupa & P. Škaloud, 2010. Pseudocryptic diversity versus cosmopolitanism in diatoms: a case study on Navicula cryptocephala Kütz. (Bacillariophyceae) and morphologically similar taxa. Protist 161: 353–369.

    Article  PubMed  Google Scholar 

  • R Development Core Team, 2011. R: A language and environment for statistical computing, ver. 2.13.0. R Foundation for Statistical Computing, Vienna.

  • Rohlf, F. J., 2010. Tps Series. Department of Ecology and Evolution, State University of NewYork at Stony Brook, New York [available on Internet at http://life.bio.sunysb.edu/morph/].

  • Round, F. E., R. M. Crawford & D. G. Mann, 1990. The Diatoms: Biology & Morphology of the Genera. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ruggiu, D., G. Morabito, P. Panzani & A. Pugnetti, 1998. Trends and relations among basic phytoplankton characteristics in the course of the longterm oligotrophication of Lake Maggiore (Italy). Hydrobiologia 370: 243–257.

    Article  Google Scholar 

  • Smucker, N. J. & M. L. Vis, 2011. Spatial factors contribute to benthic diatom structure in streams across spatial scales: considerations for biomonitoring. Ecological Indicators 11: 1191–1203.

    Article  Google Scholar 

  • Snoeijs, P., S. Busse & M. Potapova, 2002. The importance of diatom cell size in community analysis. Journal of Phycology 38: 265–272.

    Article  Google Scholar 

  • Soininen, J., R. Paavola & T. Muotka, 2004. Benthic diatom communities in boreal streams: community structure in relation to environmental and spatial gradients. Ecography 27: 330–342.

    Article  Google Scholar 

  • Soininen, J. & M. Kokocinski, 2006. Regional diatom body size distributions in streams: does size vary along environmental, spatial and diversity gradients? Ecoscience 13: 271–274.

    Article  Google Scholar 

  • Vanormelingen, P., E. Verleyen & W. Vyverman, 2008a. The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodiversity and Conservation 17: 393–405.

    Article  Google Scholar 

  • Vanormelingen, P., V. A. Chepurnov, D. G. Mann, K. Sabbe & W. Vyverman, 2008b. Genetic divergence and reproductive barriers among morphologically heterogeneous sympatric clones of Eunotia bilunaris sensu lato (Bacillariophyta). Protist 159: 73–90.

    Article  PubMed  CAS  Google Scholar 

  • Venables, W. N. & B. D. Ripley, 2002. Modern Applied Statistics with S. Springer, New York.

    Book  Google Scholar 

  • Virtanen, L. & J. Soininen, 2012. The roles of environment and space in shaping stream diatom communities. European Journal of Phycology 47: 160–168.

    Article  Google Scholar 

  • Vitt, D. H., 2006. Functional characteristics and indicators of boreal peatlands. In Wieder, R. K. & D. H. Vitt (eds.), Boreal Peatland Ecosystems. Springer, Berlin: 9–24.

    Chapter  Google Scholar 

  • Wheeler, B. D. & M. C. F. Proctor, 2000. Ecological gradients, subdivisions and terminology of north-west European mires. Journal of Ecology 88: 187–203.

    Article  Google Scholar 

  • Winder, M., J. E. Reuter & S. G. Schladow, 2009. Lake warming favours small-sized planktonic diatom species. Proceedings of the Royal Society B: Biological Sciences 276: 427–435.

    Article  PubMed  Google Scholar 

  • Wunsam, S., A. Cattaneo & N. Bourassa, 2002. Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshwater Biology 47: 325–340.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant No. 13-29315S from the Czech Science Foundation. The authors are indebted to Magda Škaloudová for her sampling assistance. The authors thank Bioedit proofreading service for the language and style corrections. We thank the anonymous reviewers for their recommendations that led us to the improvements of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Neustupa.

Additional information

Handling editor: Judit Padisak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1281 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neustupa, J., Veselá, J. & Št’astný, J. Differential cell size structure of desmids and diatoms in the phytobenthos of peatlands. Hydrobiologia 709, 159–171 (2013). https://doi.org/10.1007/s10750-013-1446-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1446-4

Keywords

Navigation