Skip to main content
Log in

Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Cyanobacteria blooms are an increasing problem in temperate freshwater lakes, leading to reduced water quality and in some cases harmful effects from toxic cyanobacteria species. To better understand the role of zooplankton in modulating cyanobacteria blooms, from 2008 to 2010 we measured water quality and plankton abundance, and measured feeding rates and prey selectivity of the copepod Diacyclops thomasi before, during and following summertime cyanobacteria blooms in a shallow, eutrophic lake (Vancouver Lake, Washington, USA). We used a combined field and experimental approach to specifically test the hypothesis that copepod grazing was a significant factor in establishing the timing of cyanobacteria bloom initiation and eventual decline in Vancouver Lake. There was a consistent annual succession of zooplankton taxa, with cyclopoid copepods (D. thomasi) dominant in spring, followed by small cladocerans (Eubosmina sp.). Before each cyanobacteria bloom, large cladocerans (Daphnia retrocurva, Daphnia laevis) peaked in abundance but quickly disappeared, followed by brief increases in rotifers. During the cyanobacteria blooms, D. thomasi was again dominant, with small cladocerans abundant in autumn. Before the cyanobacteria blooms, D. thomasi substantially consumed ciliates and dinoflagellates (up to 100% of prey biomass per day), which likely allowed diatoms to flourish. A shift in copepod grazing toward diatoms before the blooms may have then helped to facilitate the rapid increase in cyanobacteria. Copepod grazing impact was the highest during the cyanobacteria blooms both years, but focused on non-cyanobacteria prey; copepod grazing was minimal as the cyanobacteria blooms waned. We conclude that cyclopoid copepods may have an indirect role (via trophic cascades) in modulating cyanobacteria bloom initiation, but do not directly contribute to cyanobacteria bloom decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adrian, R. & T. Frost, 1993. Omnivory in cyclopoid copepods: comparisons of algae and invertebrates as food for three, differently sized species. Journal of Plankton Research 15: 643–658.

    Article  Google Scholar 

  • Boyer, J., G. Rollwagen-Bollens & S. M. Bollens, 2011. Microzooplankton grazing before, during and after a cyanobacterial bloom in Vancouver Lake, Washington, USA. Aquatic Microbial Ecology 64: 163–174.

    Article  Google Scholar 

  • Brandl, Z., 1998. Feeding strategies of planktonic cyclopoids in lacustrine ecosystems. Journal of Marine Systems 15: 87–95.

    Article  Google Scholar 

  • Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia 546: 475–489.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Burns, C. W. & Z. Xu, 1990. Calanoid copepods feeding on algae and filamentous cyanobacteria: rates of ingestion, defaecation and effects on trichome length. Journal of Plankton Research 12: 201–213.

    Article  Google Scholar 

  • Carmichael, W. W., 1992. Cyanobacteria secondary metabolites—the cyanotoxins. Journal of Applied Microbiology 72: 445–459.

    Article  CAS  Google Scholar 

  • Caromile, S. J., W. R. Meyer & C. S. Jackson, 2000. 1998 Warmwater fish survey of Vancouver Lake, Clark County. Washington Department of Fish and Wildlife.

  • Chan, F., M. L. Pace, R. W. Howarth & R. M. Marine, 2004. Bloom formation in heterocystic nitrogen-fixing cyanobacteria: the dependence on colony size and zooplankton grazing. Limnology & Oceanography 49: 2171–2178.

    Article  Google Scholar 

  • Codd, G. A., 1995. Cyanobacterial toxins: occurrence, properties and biological significance. Water Science & Technology 32: 149–156.

    Article  CAS  Google Scholar 

  • Confer, J. L. & M. V. Moore, 1987. Interpreting selectivity indices calculated from field data or conditions of prey replacement. Canadian Journal of Fisheries & Aquatic Science 44: 1529–1533.

    Article  Google Scholar 

  • Dam, H. G. & W. T. Peterson, 1988. The effect of temperature on the gut clearance rate constant of planktonic copepods. Journal of Experimental Marine Biology and Ecology 123: 1–14.

    Article  Google Scholar 

  • Dao, T. S., L.-C. Do-Hong & C. Wiegand, 2010. Chronic effects of cyanobacterial toxins on Daphnia magna and their offspring. Toxicon 55: 1244–1254.

    Article  PubMed  CAS  Google Scholar 

  • DeMott, W. R., 1995a. Food selection by calanoid copepods in response to between-lake variation in food abundance. Freshwater Biology 33: 171–180.

    Article  Google Scholar 

  • DeMott, W. R., 1995b. Optimal foraging by a suspension-feeding copepod: responses to short-term and seasonal variation in food resources. Oecologia 103: 230–240.

    Article  Google Scholar 

  • DeMott, W. R., 1999. Foraging strategies and growth inhibition in five daphnids feeding on mixtures of a toxic cyanobacterium and a green alga. Freshwater Biology 42: 263–274.

    Article  Google Scholar 

  • DeMott, W. R. & F. Moxter, 1991. Foraging on cyanobacteria by copepods: responses to chemical defenses and resource abundance. Ecology 72: 1820–1834.

    Article  Google Scholar 

  • DeMott, W. R., Q. Z. Zhang & W. W. Carmichael, 1991. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnology & Oceanography 36: 1346–1357.

    Article  CAS  Google Scholar 

  • DeMott, W. R., R. D. Gulati & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology & Oceanography 46: 2054–2060.

    Article  Google Scholar 

  • Dobberfuhl, D. R., R. Miller & J. J. Elser, 1998. Effects of a cyclopoid copepod (Diacyclops thomasi) on phytoplankton and the microbial food web. Aquatic Microbial Ecology 12: 29–37.

    Article  Google Scholar 

  • Dokulil, M. T. & K. Teubner, 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1–12.

    Article  CAS  Google Scholar 

  • Downing, J. A., S. B. Watson & E. McCauley, 2001. Predicting cyanobacteria dominance in lakes. Canadian Journal of Fisheries and Aquatic Science 58: 1905–1908.

    Article  Google Scholar 

  • Elser, J. J., 1999. The pathway to noxious cyanobacteria blooms in lakes: the food web as the final turn. Freshwater Biology 42: 537–543.

    Article  Google Scholar 

  • Elser, J. J., E. R. Marzolf & C. R. Goldman, 1990. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: a review and critique of experimental enrichments. Canadian Journal of Fisheries & Aquatic Science 47: 1468–1477.

    Article  CAS  Google Scholar 

  • Elser, J. J., C. Luecke, M. T. Brett & C. R. Goldman, 1995. Effects of food web compensation after manipulation of rainbow trout in an oligotrophic lake. Ecology 76: 52–69.

    Article  Google Scholar 

  • Elser, J. J., R. W. Sterner, A. E. Galford, et al., 2000. Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems 3: 293–307.

    Article  Google Scholar 

  • Fulton, R. S., 1988. Grazing on filamentous algae by herbivorous zooplankton. Freshwater Biology 20: 263–271.

    Article  Google Scholar 

  • Ger, K. A., S. J. Teh, D. V. Baxa, S. Lesmeister & C. R. Goldman, 2010. The effects of dietary Microcystis aeruginosa and microcystin on the copepods of the upper San Francisco Estuary. Freshwater Biology 55: 1548–1559.

    Article  Google Scholar 

  • Ghadouani, A., B. Pinel-Alloul & E. E. Prepas, 2003. Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biology 48: 363–381.

    Article  Google Scholar 

  • Gifford, S. M., G. Rollwagen-Bollens & S. M. Bollens, 2007. Mesozooplankton omnivory in the upper San Francisco Estuary. Marine Ecology Progress Series 348: 33–46.

    Article  CAS  Google Scholar 

  • Gilbert, J. J. & M. W. Durand, 1990. Effect of Anabaena flos-aquae on the abilities of Daphnia and Keratella to feed and reproduce on unicellular algae. Freshwater Biology 24: 577–596.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200(201): 83–97.

    Article  Google Scholar 

  • Hambright, K. D., N. G. Hairston Jr, W. R. Schaffner & R. W. Howarth, 2007. Grazer control of nitrogen fixation: synergisms in the feeding ecology of two freshwater crustaceans. Fundamental and Applied Limnology 170: 89–101.

    Article  CAS  Google Scholar 

  • Hillebrand, H., C.-D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Iglesias, C., N. Mazzeo, M. Meerhoff, G. Laserot, et al. 2011. High predation is of key importance for dominance of small bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667: 133–147.

    Google Scholar 

  • Irigoien, X., R. Head, U. Klenke, B. Meyer-Harms, D. Harbour, B. Niehoff, H.-J. Hirche & R. Harris, 1998. A high frequency time series at weathership M, Norwegian Sea, during the 1997 spring bloom: feeding of adult female Calanus finmarchicus. Marine Ecology Progress Series 172: 127–137.

    Article  Google Scholar 

  • Jing, H., H. Liu, T. Wong & M. Chen, 2010. Impact of mesozooplankton grazing on the microbial community revealed by denaturing gradient gel electrophoresis (DGGE). Journal of Experimental Marine Biology and Ecology 383: 39–47.

    Article  CAS  Google Scholar 

  • Kasprzak, P., R. C. Lathrop & S. R. Carpenter, 1999. Influence of different sized Daphnia species on chlorophyll concentration and summer phytoplankton community structure in eutrophic Wisconsin lakes. Journal of Plankton Research 21: 2161–2174.

    Article  Google Scholar 

  • Koski, M., K. Schmidt, J. Engstrom-Ost, M. Viitasalo, S. Jonasdottir, S. Repka & K. Sivonen, 2002. Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnology & Oceanography 47: 878–885.

    Article  Google Scholar 

  • Kosten, S., V. L. M. Huszar, E. Bécares, L. S. Costa, E. Van Donk, L.-A. Hansson, E. Jeppesen, C. Kruk, G. Lacerot, N. Mazzeo, L. De Meester, B. Moss, M. Lürling, T. Noges, S. Romo & M. Scheffer, 2012. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology 18: 118–126.

    Article  Google Scholar 

  • Lampert, W., 1982. Further studies on the inhibitory effect of the toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Archiv für Hydrobiologie 95: 207–225.

    Google Scholar 

  • Lampert, W., 1987. Laboratory studies on zooplankton-cyanobacteria interactions. New Zealand Journal of Marine & Freshwater Research 21: 483–490.

    Article  Google Scholar 

  • Le Blanc, J. S., W. D. Taylor & O. E. Johannsson, 1997. The feeding ecology of the cyclopoid copepod Diacyclops thomasi in Lake Ontario. Journal of Great Lakes Research 23: 369–381.

    Article  Google Scholar 

  • Lechowicz, M. J., 1982. The sampling characteristics of electivity indices. Oecologia 52: 22–30.

    Article  Google Scholar 

  • Marin, V., M. E. Huntley & B. Frost, 1986. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Marine Biology 93: 49–58.

    Article  Google Scholar 

  • Menden-Deuer, S. & E. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology & Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Nesjtgaard, J. C., L.-J. Naustvoll & A. Sahzin, 2001. Correcting for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series 221: 59–75.

    Article  Google Scholar 

  • Oberhaus, L., M. Gelinas, B. Pinel-Alloul, A. Ghadouani & J.-F. Humbert, 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. Journal of Plankton Research 29: 827–838.

    Article  CAS  Google Scholar 

  • O’Neill, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.

    Article  Google Scholar 

  • Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine and inland waters. Limnology & Oceanography 33: 823–847.

    Article  CAS  Google Scholar 

  • Paerl, H. W., 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Advances in Experimental & Medical Biology 619: 217–237.

    Article  CAS  Google Scholar 

  • Paerl, H. W. & R. S. Fulton, 2006. Ecology of harmful cyanobacteria. In Graneli, E. & J. Turner (eds), Ecology of Harmful Marine Algae. Ecological Studies, Vol. 189. Springer-Verlag, Berlin: 95–101.

  • Paerl, H. W. & J. Huisman, 2008. Blooms like it hot. Science 320: 57–58.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H. W. & J. Huisman, 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environmental Microbiology Reports 1: 27–37.

    Article  CAS  Google Scholar 

  • Panosso, R., P. Carlsson, B. Kozlowski-Suzuki, S. M. F. O. Azevado & E. Graneli, 2003. Effect of grazing by a neotropical copepod, Notodiaptomus, on a natural cyanobacterial assemblage and on toxic and non-toxic cyanobacterial strains. Journal of Plankton Research 25: 1169–1175.

    Article  Google Scholar 

  • Paterson, M. J., D. L. Findlay, A. G. Salki, L. L. Hendzel & R. H. Hesslein, 2002. The effects of Daphnia on nutrient stoichiometry and filamentous cyanobacteria: a mesocosm experiment in a eutrophic lake. Freshwater Biology 47: 1217–1233.

    Article  CAS  Google Scholar 

  • Pennak, R., 1989. Freshwater Invertebrates of the United States, 3rd ed. John Wiley & Sons, New York.

    Google Scholar 

  • Rollwagen-Bollens, G. C. & D. L. Penry, 2003. Feeding dynamics of Acartia spp. copepods in a large, temperate estuary (San Francisco Bay, CA). Marine Ecology Progress Series 257: 139–158.

    Article  Google Scholar 

  • Rollwagen-Bollens, G. C., S. Gifford & S. M. Bollens, 2011. The role of protistan microzooplankton in the upper San Francisco Estuary planktonic food web: source or sink? Estuaries & Coasts 34: 1026–1038.

    Article  CAS  Google Scholar 

  • Samuelsson, K. & A. Andersson, 2003. Predation limitation in the pelagic microbial food web in an oligotrophic aquatic system. Aquatic Microbial Ecology 30: 239–250.

    Article  Google Scholar 

  • Sellner, K. G., G. J. Doucette & G. J. Kirkpatrick, 2003. Harmful algal blooms: causes, impacts and detection. Journal of Indian Microbiology & Biotechnology 30: 383–406.

    Article  CAS  Google Scholar 

  • Siuda, A. N. S. & H. G. Dam, 2010. Effects of omnivory and predator–prey elemental stoichiometry on planktonic trophic interactions. Limnology & Oceanography 55: 2107–2116.

    Article  CAS  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Stemberger, R. S., 1985. Prey selection by the copepod Diacyclops thomasi. Oecologia 65: 492–497.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1972. A practical manual for seawater analysis. Fisheries Research Board of Canada Bulletin 167.

  • Teegarden, G. J., 1999. Copepod grazing selection and particle discrimination on the basis of PSP toxic content. Marine Ecology Progress Series 181: 163–176.

    Article  CAS  Google Scholar 

  • Tilman, D., R. Kiesling, R. Sterner, S. Kilham & F. A. Johnson, 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silica and nitrogen. Archiv für Hydrobiologie 106: 473–486.

    Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979a. Calculation and use of selectivity coefficients of feeding: zooplankton grazing. Ecological Modeling 7: 135–149.

    Article  Google Scholar 

  • Vanderploeg, H. A. & D. Scavia, 1979b. Two electivity indices for feeding with special reference to zooplankton grazing. Journal of the Fisheries Research Board of Canada 36: 362–365.

    Article  Google Scholar 

  • Vanni, M. J. & J. Temte, 1990. Seasonal patterns of grazing and nutrient limitation of phytoplankton in a eutrophic lake. Limnology & Oceanography 35: 697–709.

    Article  Google Scholar 

  • Vijverberg, J., H. P. Koelewijn & W. L. T. van Densen, 2005. Effects of predation and food on the population dynamics of the raptorial cladoceran Leptodora kindtii. Limnology & Oceanography 50: 455–464.

    Article  Google Scholar 

  • Wagner, C. & R. Adrian, 2009. Cyanobacteria dominance: Quantifying the effects of climate change. Limnology & Oceanography 54: 2460–2468.

    Article  Google Scholar 

  • Wiackowski, K., M. T. Brett & C. R. Goldman, 1994. Differential effects of zooplankton species on ciliate community structure. Limnology & Oceanography 39: 486–492.

    Article  Google Scholar 

  • Wickham, S., 1995. Cyclops predation on ciliates: species-specific differences and functional responses. Journal of Plankton Research 17: 1633–1646.

    Article  Google Scholar 

  • Zar, J., 1996. Biostatistical Analysis, 3rd ed. Prentice Hall, New Jersey.

    Google Scholar 

  • Zollner, E., H.-G. Hoppe, U. Sommer & K. Jurgens, 2009. Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology & Oceanography 54: 262–275.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Vancouver Lake Watershed Partnership, the Clark County Department of Public Works, the State of Washington Water Research Center/US Geological Survey, and the Washington Department of Ecology for financial support of this project in the form of grants to G.R.B. and S.M.B. We also acknowledge the contributions of Mr. Steve Prewitt, La Center High School science teacher, and the Murdock Charitable Trust “Partners in Science” program which provided summer support for his participation. We also thank the Departments of Zoology and Marine Science at the University of Otago, New Zealand, for generously providing office space to G.R.B and S.M.B, as well as Washington State University for providing sabbatical support to S.M.B, during the preparation of this manuscript. Finally, we acknowledge the contributions of two anonymous reviewers who provided many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretchen Rollwagen-Bollens.

Additional information

Handling editor: Marianne Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rollwagen-Bollens, G., Bollens, S.M., Gonzalez, A. et al. Feeding dynamics of the copepod Diacyclops thomasi before, during and following filamentous cyanobacteria blooms in a large, shallow temperate lake. Hydrobiologia 705, 101–118 (2013). https://doi.org/10.1007/s10750-012-1385-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1385-5

Keywords

Navigation