Skip to main content
Log in

Disturbance, diversity and phytoplankton production in a reservoir affected by inter-basin water transfers

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The effect of water transfers between two reservoirs on the phytoplankton community of the receiving reservoir was investigated over a 9-year period. Canonical correspondence analysis was used to demonstrate the significance of water transfers as an anthropogenic disturbance to the phytoplankton community and its diversity. A mass balance associated with a Granger causality test was applied to discriminate between the cell transport effect from the upstream reservoir and internal processes within the receiving reservoir, and to quantify the net phytoplankton growth in the receiving reservoir. Low and high disturbance regimes were identified and diversity was maximised during low disturbance conditions. The decrease of diversity during high disturbance conditions was explained by decreasing retention time, increasing silica loads and by the transport of specific phytoplankton genera, i.e. diatoms, from the upstream reservoir. Disturbance regimes significantly affected the relationship between phytoplankton production and diversity. Low disturbance regimes were described by phytoplankton dynamics likely influenced by complementarity effects, while high disturbance regimes were characterised by a phytoplankton community dominated by highly productive species and increased productivity, thus indicating an advantage of selection behaviour over complementarity effects. The phytoplankton diversity, expressed as evenness, was identified as a key variable explaining the relationship disturbance-diversity-phytoplankton production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • American Public Health Association, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF).

  • Balvanera, P., A. B. Pfisterer, N. Buchmann, J. He, T. Nakashizuka, D. Raffaelli & B. Schmid, 2006. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters 9: 1146–1156.

    Article  PubMed  Google Scholar 

  • Bertrand, C., E. Franquet, N. Chomerat & A. Cazaubon, 2004. An approach to the intermediate disturbance hypothesis at the landscape scale: the effects of hydrodynamic disturbance on phytoplankton communities. Archiv fr Hydrobiologie 161: 351–369.

    Article  Google Scholar 

  • Bunn, S. E. & A. H. Arthington, 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management 30: 492–507.

    Article  PubMed  Google Scholar 

  • Cardinale, B. J., 2011. Biodiversity improves water quality through niche partitioning. Nature 472: 86–89.

    Article  PubMed  CAS  Google Scholar 

  • Cardinale, B. J. & M. A. Palmer, 2002. Disturbance moderates biodiversity-ecosystem function relationships: experimental evidence from caddisflies in stream mesocosms. Ecology 83: 1915–1927.

    Google Scholar 

  • Cardinale, B. J., M. A. Palmer, A. R. Ives & S. S. Brooks, 2005. Diversity-productivity relationships in streams vary as a function of the natural disturbance regime. Ecology 86: 716–726.

    Article  Google Scholar 

  • Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran & C. Jouseau, 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Cardinale, B. J., K. L. Matulich, D. U. Hooper, J. E. Byrnes, E. Duffy, L. Gamfeldt, P. Balvanera, M. I. O’Connor & A. Gonzalez, 2011. The functional role of producer diversity in ecosystems. American Journal of Botany 98: 572–592.

    Article  PubMed  Google Scholar 

  • Carpenter, S. R., T. M. Frost, D. Heisey & T. K. Kratz, 1989. Randomized intervention analysis and the interpretation of whole-ecosystem experiments. Ecology 70: 1142–1152.

    Article  Google Scholar 

  • Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack & S. Diaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.

    Article  PubMed  CAS  Google Scholar 

  • Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Article  Google Scholar 

  • Elliot, J. A., A. E. Irish & C. S. Reynolds, 2001. The effects of vertical mixing on a phytoplankton community: a modelling approach to the intermediate disturbance hypothesis. Freshwater Biology 46: 1291–1297.

    Article  Google Scholar 

  • Floder, S. & U. Sommer, 1999. Diversity in planktonic communities: an experimental test of the intermediate disturbance hypothesis. Limnology and Oceanography 44: 1114–1119.

    Article  Google Scholar 

  • Fornarelli, R. & J. P. Antenucci, 2011. The impact of transfers on water quality and the disturbance regime in a reservoir. Water Research 45: 5873–5885.

    Article  PubMed  CAS  Google Scholar 

  • Gallardo, B., M. Garcia, A. Cabezas, E. Gonzalez, M. Gonzalez, C. Ciancarelli & F. A. Comin, 2008. Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquatic Sciences 70: 248–258.

    Article  CAS  Google Scholar 

  • Gamfeldt, L. & H. Hillebrand, 2011. Effects of total resources, resource ratios, and species richness on algal productivity and evenness at both metacommunity and local scales. PLoS ONE 6: e21972.

    Article  PubMed  CAS  Google Scholar 

  • Granger, C. W. J., 1969. Investigating causal relations by econometric models and cross spectral models. Econometrica 37: 424–438.

    Article  Google Scholar 

  • Grant, E. H. C., H. J. Lynch, R. Muneepeerakul, M. Arunachalam, I. Rodriguez-Iturbe & W. F. Fagan, 2012. Interbasin water transfer, riverine connectivity, and spatial controls on fish biodiversity. PLoS ONE 7: e34170.

    Article  PubMed  CAS  Google Scholar 

  • Grover, J. P. & T. H. Chrzanowski, 2004. Limiting resources, disturbance, and diversity in phytoplankton communities. Ecological Monographs 74: 533–551.

    Article  Google Scholar 

  • Hector, A. & R. Bagchi, 2007. Biodiversity and ecosystem multifunctionality. Nature 448: 188–191.

    Article  PubMed  CAS  Google Scholar 

  • Hillebrand, H., D. M. Bennett & M. W. Cadotte, 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89: 1510–1520.

    Article  PubMed  Google Scholar 

  • Hoffmann, R., C. Lee, B. Ramasamy & M. Yeung, 2005. FDI and pollution: a granger causality test using panel data. Journal of International Development 17: 311–317.

    Article  Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Ingleton, T., T. Kobayashi, B. Sanderson, R. Patra, C. M. O. Macinnis-Ng, B. Hindmarsh & L. C. Bowling, 2008. Investigations of the temporal variation of cyanobacterial and other phytoplanktonic cells at the offtake of a large reservoir, and their survival following passage through it. Hydrobiologia 603: 221–240.

    Article  Google Scholar 

  • Kaufmann, R. K. & D. I. Stern, 1997. Evidence for human influence on climate from hemispheric temperature relations. Nature 388: 39–44.

    Article  CAS  Google Scholar 

  • Korhonen, J. J., J. Wang & J. Soininen, 2011. Productivity-diversity relationships in lake plankton communities. PLoS ONE 6: e22041.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, C., B. Stewart-Koster, F. Sheldon & M. A. Burford, 2012. Understanding multiple ecological responses to anthropogenic disturbance: rivers and potential flow regime change. Ecological Applications 22: 250–263.

    Article  PubMed  Google Scholar 

  • Li, Z., S. Wang, J. Guo, F. Fang, X. Gao & M. Long, 2012. Responses of phytoplankton diversity to physical disturbance under manual operation in a large reservoir, China. Hydrobiologia 684: 45–56.

    Article  Google Scholar 

  • Llyod, N., G Quinn, M. Thoms, A. Arthington, B. Gawne, P. Humphries & K. Walker, 2004. Does flow modification cause geomorphological and ecological response in rivers? A literature review from an Australian perspective. CRC for Freshwater Ecology.

  • Loreau, M., 2008. Biodiversity and ecosystem functioning: the mystery of the deep sea. Current Biology 18: 126–128.

    Article  Google Scholar 

  • Loreau, M. & A. Hector, 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.

    Article  PubMed  CAS  Google Scholar 

  • McKnight, P. E. & J. Najab, 2010. Mann-Whitney U Test. Corsini Encyclopedia of Psychology. p. 1.

  • Miller, A. D., S. H. Roxburgh & K. Shea, 2011. How frequency and intensity shape diversity-disturbance relationships. Proceedings of the National Academy of Sciences of the United States of America 108: 5643–5648.

    Article  PubMed  CAS  Google Scholar 

  • Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson & L. Gough, 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–2396.

    Article  Google Scholar 

  • Moreno-Ostos, E., J. A. Elliott, L. Cruz-Pizarro, C. Escot, A. Basanta & D. G. George, 2007. Using a numerical model (PROTECH) to examine the impact of transfers on phytoplankton dynamics in a Mediterranean reservoir. Limnetica 26: 1–11.

    Google Scholar 

  • Mosedale, T. J. & D. B. Stephenson, 2006. Granger causality of coupled climate processes: ocean feedback on the north Atlantic oscillation. Journal of Climate 19: 1182–1194.

    Article  Google Scholar 

  • Mulder, C. P. H., E. Bazeley-White, P. G. Dimitrakopoulos, A. Hector, M. Scherer-Lorenzen & B. Schmid, 2004. Species evenness and productivity in experimental plant communities. OIKOS 107: 50–63.

    Article  Google Scholar 

  • Padisak, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249: 135–156.

    Article  Google Scholar 

  • Poff, N. L. & J. K. H. Zimmerman, 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology 55: 194–205.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, D. M. Merritt & D. M. Pepin, 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America 104: 5732–5737.

    Article  PubMed  CAS  Google Scholar 

  • Ptacnik, R., A. G. Solimini, T. Andersen, T. Tamminen, P. Brettum, L. Lepisto, E. Willlen & S. Rekolainen, 2008. Diversity predicts stability and resource use efficiency in natural phytoplankton communities. Proceedings of the National Academy of Sciences of the United States of America 105: 5134–5138.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press.

  • Schagerl, M., I. Drozdowski, D. G. Angeler, T. Hein & S. Preiner, 2009. Water age—a major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria). Journal of Limnology 68: 274–287.

    Article  Google Scholar 

  • Shumway, R. H., 1988. Applied Statistical Time Series Analysis. Prentice-Hall International Editions Inc. A Division of Simon & Schuster, Englewood Cliffs, NJ.

    Google Scholar 

  • Snaddon, C. D. & B. R. Davies, 1998. A preliminary assessment of the effects of a small South African inter-basin water transfer on discharge and invertebrate community structure. Regulated Rivers: Research and Management 14: 421–441.

    Article  Google Scholar 

  • Soulsby, C., C. N. Gibbins & T. Robins, 1999. Inter-basin water transfers and drought management in the Kielder/Derwent system. Journal of the Chartered Institution of Water and Environmental Management 13: 213–223.

    Article  Google Scholar 

  • Stanley, E. H., S. M. Powers & N. R. Lottig, 2010. The evolving legacy of disturbance in stream ecology: concepts, contributions, and coming challenges. Journal of the North American Benthological Society 29: 67–83.

    Google Scholar 

  • Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • Thomaz, A. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Valery, L., H. Frizt, J. C. Lefeuvre & D. Simberloff, 2009. Ecosystem-level consequences of invasions by native species as a way to investigate relationships between evenness and ecosystem function. Biological Invasions 11: 609–617.

    Article  Google Scholar 

  • Vogt, R. J., B. E. Beisner & Y. T. Prairie, 2010. Functional diversity is positively associated with biomass for lake diatoms. Freshwater Biology 55: 1636–1646.

    CAS  Google Scholar 

Download references

Acknowledgments

The first author was the recipient of a Scholarship for International Research Fees from the University of Western Australia and of a University International Stipend from the Centre for Water Research. We are very grateful to Professor David Hamilton and Dr. Tamar Zohary for their precious feedback, to Ryan Alexander for his accurate suggestions, and to two anonymous reviewers for their appropriate and constructive suggestions and for their proposed corrections to improve the paper. We gratefully acknowledge the support of the Sydney Catchment Authority for providing access to the data. The findings, opinions and conclusions expressed herein are those of the authors and do not represent the views or opinions of the Sydney Catchment Authority or any person employed in the Sydney Catchment Authority Division. This article represents the Centre for Water Research reference 2414-RF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Fornarelli.

Additional information

Handling editor: Boping Han

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornarelli, R., Antenucci, J.P. & Marti, C.L. Disturbance, diversity and phytoplankton production in a reservoir affected by inter-basin water transfers. Hydrobiologia 705, 9–26 (2013). https://doi.org/10.1007/s10750-012-1351-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1351-2

Keywords

Navigation