Skip to main content
Log in

Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lake

  • SHALLOW LAKE ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

How substrate affects periphyton biomass and nutrient state at different, but high, nutrient levels was tested in three large enclosures in a hypereutrophic subtropical shallow lake. We compared periphytic characteristics (1) on three hard substrates (stone, bamboo, and wood) incubated for 2 weeks and 1 year, respectively, to investigate the existence of the influences of substrate type at hypereutrophic levels, and (2) on artificial plants with contrasting (parvopotamid-like and myriophyllid-like) soft substrate morphology. In general, periphytic biomass and nutrient state were sensitive to variations in nutrient level, incubation time, hard substrate type (except 2-week incubated) and substrate morphology, but to a varying extent. The periphyton nutrient content increased with increasing nutrient levels on most substrates. Long-time incubated substrates supported more periphytic biomass, had a higher nutrient content and autotrophic proportion, while the effect of nutrient level on nutrient content in the periphyton was independent of incubation time. The effects of hard substrate type on periphyton characteristics were much weaker than those of nutrient level. By contrast, the effects of soft substrate morphology on periphyton biomass and carbon: nutrient ratios surpassed those of nutrient level. Chlorophyll a, dry mass, and ash free dry mass were much higher on parvopotamid than on myriophyllid substrates. Our results show that periphyton biomass and nutrient state are influenced by both substrate and nutrient level even in hypereutrophic lakes, which might have cascading effects on the benthic food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acs, E., K. T. Kiss, K. E. Szabo, A. K. Borsodi, P. Vladar, E. Kiss, G. Varbiro & G. Zaray, 2008. Comparative algological and bacteriological examinations on biofilms developed on different substrata in a shallow soda lake. Aquatic Ecology 42: 521–531.

    Article  CAS  Google Scholar 

  • APHA, 1995. Standard methods for the analysis of water and waste water. In Standard Methods for the Analysis of Water and Waste Water. American Public Health Association, Washington, DC.

  • Azim, M. E., M. C. J. Verdegem, M. Singh, A. A. van Dam & M. C. M. Beveridge, 2003. The effects of periphyton substrate and fish stocking density on water quality, phytoplankton, periphyton and fish growth. Aquaculture Research 34: 685–695.

    Article  Google Scholar 

  • Bourassa, N. & A. Cattaneo, 2000. Responses of a lake outlet community to light and nutrient manipulation: effects on periphyton and invertebrate biomass and composition. Freshwater Biology 44: 629–639.

    Article  Google Scholar 

  • Bowman, M. F., P. A. Chambers & D. W. Schindler, 2005. Changes in stoichiometric constraints on epilithon and benthic macroinvertebrates in response to slight nutrient enrichment of mountain rivers. Freshwater Biology 50: 1836–1852.

    Article  CAS  Google Scholar 

  • Carrick, H. J. & R. L. Lowe, 2007. Nutrient limitation of benthic algae in Lake Michigan: the role of silica. Journal of Phycology 43: 228–234.

    Article  CAS  Google Scholar 

  • Cattaneo, A. & M. C. Amireault, 1992. How artificial are artificial substrata for periphyton? Journal of the North American Benthological Society 11: 244–256.

    Article  Google Scholar 

  • Danilov, R. A. & N. G. A. Ekelund, 2001. Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement patterns of periphyton in lakes of different trophic status. Journal of Microbiological Methods 45: 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Danilov, R. A. & N. G. A. Ekelund, 2002. Periphyton communities on natural substrata in eu-, meso- and oligotrophic lakes at higher latitude. Biologia 57: 433–436.

    Google Scholar 

  • Eminson, D. & B. Moss, 1980. The composition and ecology of periphyton communities in freshwaters. I. The influence of host type and external environment on community composition. British Phycological Journal 15: 429–446.

    Article  Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1996. Functional differences in epiphytic microbial communities in nutrient-rich freshwater ecosystems: an assay of denitrifying capacity. Freshwater Biology 36: 555–562.

    Article  Google Scholar 

  • Godwin, C. M., M. A. Arthur & H. J. Carrick, 2009. Periphyton nutrient status in a temperate stream with mixed land-uses: implications for watershed nitrogen storage. Hydrobiologia 623(1): 141–152.

    Article  CAS  Google Scholar 

  • Gross, E. M., C. Feldbaum & A. Graf, 2003. Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes. Hydrobiologia 506: 559–565.

    Article  Google Scholar 

  • Hillebrand, H. & M. Kahlert, 2001. Effect of grazing and nutrient supply on periphyton biomass and nutrient stoichiometry in habitats of different productivity. Limnology and Oceanography 46: 1881–1898.

    Article  CAS  Google Scholar 

  • Jones, L. H. P., A. A. Milne & J. V. Sanders, 1966. Tabashir: an opal of plant origin. Science 151: 464–466.

    Google Scholar 

  • Jones, J. I., J. O. Young, G. M. Haynes, B. Moss, J. W. Eaton & K. J. Hardwick, 1999. Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? Oecologia 120: 463–474.

    Article  Google Scholar 

  • Kahlert, M. & K. Pettersson, 2002. The impact of substrate and lake trophy on the biomass and nutrient status of benthic algae. Hydrobiologia 489: 161–169.

    Article  CAS  Google Scholar 

  • Lalonde, S. & J. A. Downing, 1991. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Canadian Journal of Fisheries and Aquatic Sciences 48: 2285–2291.

    Article  Google Scholar 

  • Li, E. H., W. Li, X. L. Wang, H. P. Xue & F. Xiao, 2010. Experiment of emergent macrophytes growing in contaminated sludge: implication for sediment purification and lake restoration. Ecological Engineering 36: 427–434.

    Article  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48: 418–431.

    Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2009. Periphyton biomass, potential production and respiration in a shallow lake during winter and spring. Hydrobiologia 632: 201–210.

    Article  Google Scholar 

  • Liu, Z. H., X. H. Liu, B. He, J. F. Nie, J. Y. Peng & L. Zhao, 2009. Spatio-temporal change of water chemical elements in Lake Dianchi, China. Water and Environment Journal 23: 235–244.

    Article  CAS  Google Scholar 

  • Murdock, J. N. & W. K. Dodds, 2007. Linking benthic algal biomass to stream substratum topography. Journal of Phycology 43: 449–460.

    Article  Google Scholar 

  • Özkan, K., E. Jeppesen, L. S. Johansson & M. Beklioglu, 2010. The response of periphyton and submerged macrophytes to nitrogen and phosphorus loading in shallow warm lakes: a mesocosm experiment. Freshwater Biology 55: 463–475.

    Article  Google Scholar 

  • Potapova, M. & D. F. Charles, 2005. Choice of substrate in algae-based water-quality assessment. Journal of the North American Benthological Society 24: 415–427.

    Article  Google Scholar 

  • Qin, P., C. M. Mayer, K. L. Schulz, X. Ji & M. Ritchie, 2007. Ecological stoichiometry in benthic food webs: light and nutrients effects on periphyton food quantity and quality in lakes. Limnology and Oceanography 52: 1728–1734.

    Article  CAS  Google Scholar 

  • Reet, L. & R. Markku, 2005. The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi. Hydrobiologia 547: 137–150.

    Article  Google Scholar 

  • Romani, A. M., A. Giorgi, V. Acuna & S. Sabater, 2004. The influence of substratum type and nutrient supply on biofilm organic matter utilization in streams. Limnology and Oceanography 49: 1713–1721.

    Article  CAS  Google Scholar 

  • Rosowski, J. R., K. D. Hoagland & J. E. Aloi, 1986. Structural morphology of diatom-dominated stream biofilm communities under the impact of soil erosion. In L. V. Evans & K. D. Hoagland (eds), Algal Biofouling. Elsevier, Amsterdam, New York, Oxford. Tokyo Studies in Environmental Sciences 28: 247–298.

  • Sabater, S., S. V. Gregory & J. R. Sedell, 1998. Community dynamics and metabolism of benthic algae colonizing wood and rock substrata in a forest stream. Journal of Phycology 34: 561–567.

    Google Scholar 

  • Sager, L., 2009. Measuring the trophic status of ponds: relationships between summer rate of periphytic net primary productivity and water physico-chemistry. Water Research 43: 1667–1679.

    Article  PubMed  CAS  Google Scholar 

  • SEPA, 2002. Monitoring and analytical method of water and wastewater. In: Monitoring and Analytical Method of Water and Wastewater. Environmental and Scientific Press of China, Beijing (in Chinese).

  • Sinsabaugh, R. L., S. W. Golladay & A. E. Linkins, 1991. Comparison of epilithic and epixylic biofilm development in a boreal river. Freshwater Biology 25: 179–187.

    Article  Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on benthic freshwater algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology—Freshwater Benthic Ecosystems. Academic Press, London.

    Google Scholar 

  • Steinman, A. D. & G. A. Lamberti, 1996. Biomass and pigments of benthic algae. In Hauer, R. & G. A. Lamberti (eds), Stream Ecology. Academic Press, London: 669.

    Google Scholar 

  • Tank, J. L. & W. K. Dodds, 2003. Nutrient limitation of epilithic and epixylic biofilms in ten North American streams. Freshwater Biology 48: 1031–1049.

    Article  CAS  Google Scholar 

  • Tuchman, M. L. & R. J. Stevenson, 1980. Comparison of clay tile, sterilized rock, and natural substrate diatom communities in a small stream in Southeastern Michigan, USA. Hydrobiologia 75: 73–79.

    Article  Google Scholar 

  • Vadeboncoeur, Y. & D. M. Lodge, 2000. Periphyton production on wood and sediment: substratum-specific response to laboratory and whole-lake manipulations. Journal of the North American Benthological Society 19: 68–81.

    Article  Google Scholar 

  • Vadeboncoeur, Y., D. M. Lodge & S. R. Carpenter, 2001. Whole-lake fertilization effects on distribution of primary production between benthic and pelagic habitats. Ecology 82: 1065–1077.

    Article  Google Scholar 

  • Vadeboncoeur, Y., E. Jeppesen, M. J. Vander Zanden, H.-H. Schierup, K. Christoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic energy pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Vadeboncoeur, Y., J. Kalff, K. Christoffersen & E. Jeppesen, 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society 25: 379–392.

    Article  Google Scholar 

  • Ventura, M., L. Liboriussen, T. Lauridsen, M. Søndergaard, M. Søndergaard & E. Jeppesen, 2008. Effects of increased temperature and nutrient enrichment on the stoichiometry of primary producers and consumers in temperate shallow lakes. Freshwater Biology 53: 1434–1452.

    Article  CAS  Google Scholar 

  • Wetzel, R. G., 1990. Land–water interfaces: metabolic and limnological regulators. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 24: 6–24.

    Google Scholar 

  • Xing, K., H. Guo, Y. Sun & Y. Huang, 2005. Assessment of the spatial-temporal eutrophic character in the Lake Dianchi. Journal of Geographical Sciences 15: 37–43.

    Google Scholar 

Download references

Acknowledgments

We thank the Dianchi Work Station of the Institute of Hydrobiology, Chinese Academy of Sciences, for providing sampling equipment and laboratory facilities as well as board and lodging, Liu Youping for helpful discussions, Li Wanhua for artificial substrate preparations and samplings/sampling assistance, and Xie Jin’e for chemical analyses. This study was financed by the National Key Project for Basic Research of China (2002CB412300), the National Scientific Foundation Project of China (30570291) and the Wuhan Academic Leader Programme (201051730562). In addition, EJ received support from “CLEAR” (a Villum Kann Rasmussen Centre of Excellence project) and The Danish Council for Independent Research: Natural Sciences (272-08-0406). Anne Mette Poulsen is greatly acknowledged for editorial assistance, and we thank guest editor Zhengwen Liu as well as the reviewers for valuable comments, which greatly improved the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Additional information

Guest editors: Zhengwen Liu, Bo-Ping Han & Ramesh D. Gulati / Conservation, management and restoration of shallow lake ecosystems facing multiple stressors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, N., Li, H., Jeppesen, E. et al. Influence of substrate type on periphyton biomass and nutrient state at contrasting high nutrient levels in a subtropical shallow lake. Hydrobiologia 710, 129–141 (2013). https://doi.org/10.1007/s10750-012-1287-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1287-6

Keywords

Navigation