Skip to main content

Advertisement

Log in

Vulnerability of stream biota to climate change in mediterranean climate regions: a synthesis of ecological responses and conservation challenges

  • MEDITERRANEAN CLIMATE STREAMS
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acreman, M. & M. J. Dunbar, 2004. Defining environmental flow requirements – a review. Hydrology and Earth Sciences 8: 861–876.

    Google Scholar 

  • Adam, J. C., A. F. Hamlet & D. P. Lettenmaier, 2009. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrological Processes 23: 962–972.

    Google Scholar 

  • Adrian, R., S. Wilhelm & D. Gerten, 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Global Change Biology 12: 652–661.

    Google Scholar 

  • Alcamo, J., M. Flörke & M. Marker, 2007. Future long-term changes in global water resources driven by socio-economic and climatic change. Hydrological Sciences 52: 247–275.

    Google Scholar 

  • Anav, A. & A. Mariotti, 2011. Sensitivity of natural vegetation to climate change in the Euro-Mediterranean area. Climate Research 46: 277–292.

    Google Scholar 

  • Aparicio, E., M. J. Vargas, J. M. Olmo & A. de Sostoa, 2000. Decline of native freshwater fishes in a mediterranean watershed on the Iberian Peninsula: a quantitative assessment. Environmental Biology of Fishes 59: 11–19.

    Google Scholar 

  • Arnell, N. W., 1999. Climate change and global water resources. Global Environmental Change 9: S31–S49.

    Google Scholar 

  • Arnell, N. W., 2004. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change 14: 31–52.

    Google Scholar 

  • Arthington, A. H., S. E. Bunn, N. L. Poff & N. J. Naiman, 2006. The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Applications 16: 1311–1318.

    PubMed  Google Scholar 

  • Avila, A., C. Neal & J. Terradas, 1996. Climate change and implications for streamflow and streamwater chemistry in a mediterranean catchment. Journal of Hydrology 177: 99–116.

    CAS  Google Scholar 

  • Baettig, M. B., M. Wild & D. M. Imboden, 2007. A climate change index: where climate change may be most prominent in the 21st century. Geophysical Research Letters 34: L01705.

    Google Scholar 

  • Balanza, R., P. García-Lorda, C. Pérez-Rodrigo, J. Aranceta, M. B. Bonet & J. Salas-Salvado, 2007. Trends in food availability by the Food and Agriculture Organization’s food balance sheets in Mediterranean Europe in comparison with other European areas. Public Health Nutrition 10: 168–176.

    PubMed  Google Scholar 

  • Bálint, M. S. Domisch, C. H. M. Engelhardt, P. Haase, S. Lehrian, J. Sauer, K. Theissinger, S. U. Pauls & C. Nowak, 2011. Cryptic biodiversity loss linked to global climate change. Nature Climate Change 1: 313–318.

    Google Scholar 

  • Bayoh, M. N. & S. W. Lindsay, 2003. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bulletin of Entomological Research 93: 375–381.

    PubMed  CAS  Google Scholar 

  • Bêche, L. A. & V. H. Resh, 2007a. Biological traits of benthic macroinvertebrates in California mediterranean-climate streams: long-term annual variability and trait diversity patterns. Fundamental and Applied Limnology 169: 1–23.

    Google Scholar 

  • Bêche, L. A. & V. H. Resh, 2007b. Short-term climatic trends affect the temporal variability of macroinvertebrates in California ‘mediterranean’ streams. Freshwater Biology 52: 2317–2339.

    Google Scholar 

  • Bêche, L. A., P. G. Connors, V. H. Resh & A. M. Merenlender, 2009. Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 32: 778–788.

    Google Scholar 

  • Behrens, A., J. N. Ferrer & C. Egenhofer, 2008. Financial Impacts of Climate Change: Implications for the EU Budget. Centre for European Policy Studies, CEPS Working Document No. 300. [available on internet at http://www.ceps.eu].

  • Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377.

    Google Scholar 

  • Betoret, B., 2000. Expansion de Trithemis annulata en Europa en los años 80 y 90 (Odonata). Boletín Sociedad Entomológica Aragonesa 27: 85–86.

    Google Scholar 

  • Bianco, P. G., 1995. Mediterranean endemic freshwater fishes of Italy. Biological Conservation 72: 159–170.

    Google Scholar 

  • Blondel, J., J. Aronson, J.-Y. Bodiou & G. Boeuf, 2010. The Mediterranean Region: Biological Diversity Through Time And Space. Oxford University Press, Oxford.

    Google Scholar 

  • Boix-Fayos, C., A. Calvo-Cases, A. C. Imeson, M. D. Soriano Soto & I. R. Tiemessen, 1998. Spatial and short-term temporal variations in runoff, soil aggregation and other soil properties along a mediterranean climatological gradient. Catena 33: 123–138.

    CAS  Google Scholar 

  • Bonada, N., S. Dolédec & B. Statzner, 2007a. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Google Scholar 

  • Bonada, N., M. Rieradevall & N. Prat, 2007b. Macroinvertebrate community structure and biological traits related to flow permanence in a mediterranean river network. Hydrobiologia 589: 91–106.

    Google Scholar 

  • Bonada, N., C. Zamora-Muñoz, M. El Alami, C. Múrria & N. Prat, 2008a. New records of Trichoptera in reference mediterranean-climate rivers of the Iberian Peninsula and north of Africa: taxonomical, faunistical and ecological aspects. Graellsia 64: 189–208.

    Google Scholar 

  • Bonada, N., M. Rieradevall, H. Dallas, J. Davies, J. Day, R. Figueroa, V. H. Resh & N. Prat, 2008b. Multi-scale assessment of macroinvertebrate richness and composition in mediterranean-climate rivers. Freshwater Biology 53: 772–788.

  • Buisson, L. & G. Grenouillet, 2009. Contrasted impacts of climate change on stream fish assemblages along an environmental gradient. Diversity and Distributions 15: 613–626.

    Google Scholar 

  • Buisson, L., L. Blanc & G. Grenouillet, 2008. Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish 17: 244–257.

    Google Scholar 

  • Buisson, L., G. Grenouillet, N. Casajus & S. Lek, 2010. Predicting the potential impacts of climate change on stream fish assemblages. American Fisheries Society Symposium 73: 327–346.

    Google Scholar 

  • Burgmer, T., H. Hillebrand & M. Pfenninger, 2007. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93–103.

    PubMed  CAS  Google Scholar 

  • Cai, W. & T. Cowan, 2008. Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophysical Research Letters 35: L07701.

    Google Scholar 

  • Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51: 1389–1406.

    Google Scholar 

  • Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree & K. Hayhoe, 2006. Climate change scenarios for the California region. Climatic Change 87: S21–S42.

    Google Scholar 

  • Cid, N., C. Ibáñez & N. Prat, 2008. Life history and production of the burrowing mayfly Ephoron virgo (Olivier, 1791) (Ephemeroptera: Polymitarcyidae) in the lower Ebro river: a comparison after 18 years. Aquatic Insects 30: 163–178.

    Google Scholar 

  • Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and recolonisation by invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Google Scholar 

  • Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, R. Held, R. Jones, R. K. Kolli, W. K. Kwon, R. Laprise, V. Magana Rueda, L. Mearns, C. G. Menendez, J. Räisänen, A. Rinke, A. Sarr, P. Whetton, R. Arritt, R. Benestad, M. Beniston, D. Bromwich, D. Caya, J. Comiso, R. de Elia & K Dethloff, 2007. Regional climate projections. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. Averyt, M. Tignor & H. Miller (eds), Climate Change 2007: The Physical Science Basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge: 847–940.

  • Clavero, M. & E. García-Berthou, 2006. Homogenization dynamics and introduction routes of invasive freshwater fish in the Iberian Peninsula. Ecological Applications 16: 2313–2324.

    PubMed  Google Scholar 

  • Costa, A. C. & A. Soares, 2009. Trends in extreme precipitation indices derived from a daily rainfall database for the South of Portugal. International Journal of Climatology 29: 1956–1975.

    Google Scholar 

  • Crozier, L. G., A. P. Hendry, P. W. Lawson, T. P. Quinn, N. J. Mantua, J. Battin, R. G. Shaw & R. B. Huey, 2008a. Potential responses to climate change in organisms with complex life histories: evolution and plasticity in Pacific salmon. Evolutionary Applications 1: 252–270.

    Google Scholar 

  • Crozier, L. G., R. W. Zabel & A. F. Hamlet, 2008b. Predicting differential effects of climate change at the population level with life-cycle models of spring Chinook salmon. Global Change Biology 14: 236–249.

    Google Scholar 

  • CSIRO, Australian Bureau of Meteorology, 2007. Climate Change in Australia: Technical Report. CSIRO and the Bureau of Meteorology, Australia. [available on internet at http://climatechangeinaustralia.com.au].

  • Daufresne, M. & P. Boët, 2007. Climate change impacts on structure and diversity of fish communities in rivers. Global Change Biology 13: 2467–2478.

    Google Scholar 

  • Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2003. Long-term changes within the invertebrate and fish. Communities of the Upper Rhône River: effects of climatic factors. Global Change Biology 10: 124–140.

    Google Scholar 

  • Daufresne, M., K. Lengfellner & U. Sommer, 2009. Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12788–12793.

    PubMed  CAS  Google Scholar 

  • Davies, P. M. & B. A. Stewart, 2012. Freshwater faunal biodiversity in the Mediterranean climate waterways of southwestern Australia. Hydrobiologia, this issue.

  • Davies, B. R., J. H. O’Keeffe & C. D. Snaddon, 1993. A Synthesis of the Ecological Functioning, Conservation and Management of South African River Ecosystems. Report No. TT 62/93. Water Research Commission, Pretoria.

  • Davis, E. B., M. S. Koo, C. Conroy, J. L. Patton & C. Moritz, 2007. The California Hotspots Project: identifying regions of rapid diversification of mammals. Molecular Ecology 17: 120–138.

    PubMed  Google Scholar 

  • De Castro, M., J. Martín-Vide & S. Alonso, 2005. The climate of Spain: past, present and scenarios for the 21st century. In Moreno, J. M. (ed.), A Preliminary General Assessment of the Impacts in Spain due to the Effects of Climate Change. Spanish Ministry of Environment, Madrid: 1–62.

    Google Scholar 

  • De Moor, F. C. & J. A. Day, 2012. Aquatic biodiversity in the mediterranean region of South Africa. Hydrobiologia, this issue.

  • Department of the Interior, 2011. Climate change adaptation. 2011 Budget of the United States of America. [available on internet at http://www.doi.gov/budget/2011/11Hilites/toc.html].

  • Diffenbaugh, N. S., F. Giorgi & J. S. Pal, 2008. Climate change hotspots in the United States. Geophysical Research Letters 35: L16709.

    Google Scholar 

  • EEA, European Environment Agency, 2008. Impacts of Europe’s Changing Climate – 2008 Indicator-based Assessment. EEA-JRC-WHO report. EEA, Copenhagen.

  • Feio, M. J., N. C. Coimbra, M. A. S. Graça, S. J. Nichols & R. H. Norris, 2010. The influence of extreme climatic events and human disturbance on macroinvertebrate community patterns of a mediterranean stream, over 15 y. Journal of the North American Benthological Society 29: 1397–1409.

    Google Scholar 

  • Ficke, A. D., C. A. Myrick & L. J. Hansen, 2007. Potential impacts of global change on freshwater fisheries. Reviews in Fish Biology and Fisheries 17: 581–613.

    Google Scholar 

  • Filipe, A. F., T. Marques, S. G. Seabra, P. Tiago, F. Ribeiro, L. Moreira da Costa, I. G. Cowx & M. J. Collares-Pereira, 2004. Selection of priority areas for fish conservation in the Guadiana River Basin, Iberian Peninsula. Conservation Biology 18: 189–200.

    Google Scholar 

  • Filipe, A. F., M. B. Araújo, I. Doadrio, P. L. Angermeier & M. J. Collares-Pereira, 2009. Biogeography of Iberian freshwater fishes revisited: the roles of historical versus contemporary constraints. Journal of Biogeography 36: 2096–2110.

    Google Scholar 

  • Filipe, A. F., M. F. Magalhães & M. J. Collares-Pereira, 2010. Native and introduced fish species richness in mediterranean streams: the role of multiple landscape influences. Diversity and Distributions 16: 773–785.

    Google Scholar 

  • Finn, D. S., N. Bonada, C. Múrria & J. M. Hughes, 2011. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. Journal of North American Benthological Society 30: 963–980.

    Google Scholar 

  • Fitzpatrick, M. C., A. D. Gove, N. J. Sanders & R. R. Dunn, 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biology 14: 1337–1352.

    Google Scholar 

  • Fleckenstein, J., M. Anderson, G. Fogg & J. Mount, 2004. Managing surface water-groundwater to restore fall flows in the Cosumnes River. Journal of Water Resources Planning and Management 130: 301–310.

    Google Scholar 

  • Gaigher, I. G., K. C. D. Hamman & S. C. Thorne, 1980. The distribution, conservation status and factors affecting the survival of indigenous freshwater fishes in the Cape Province. Koedoe 23: 57–58.

    Google Scholar 

  • Gasith, A., 1991. Conservation and management of the coastal streams of Israel: an assessment of stream status and prospect for rehabilitation. In Boon, P., G. Petts & P. Calow (eds), River Conservation and Management. Wiley, New York: 51–63.

    Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Google Scholar 

  • Giannakopoulos, C., P. Le Sager, M. Bindi, M. Moriondo, E. Kostopoulou & C. M. Goodess, 2009. Climatic changes and associated impacts in the Mediterranean resulting from a 2°C global warming. Global and Planetary Change 68: 209–224.

    Google Scholar 

  • Giorgi, F., 2006. Climate change hot-spots. Geophysical Research Letters 33: L08707.

    Google Scholar 

  • Giorgi, F. & P. Lionello, 2008. Climate change projections for the Mediterranean region. Global and Planetary Change 63: 90–104.

    Google Scholar 

  • Gleick, P. H. & M. Palaniappan, 2010. Peak water limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences of the United States of America 107: 11155–11162.

    PubMed  CAS  Google Scholar 

  • Goudie, A. S., 2006. Global warming and fluvial geomorphology. Geomorphology 79: 384–394.

    Google Scholar 

  • Gritti, E. S., B. Smith & M. T. Sykes, 2006. Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. Journal of Biogeography 33: 145–157.

    Google Scholar 

  • Grubb, P. J. & A. J. M. Hopkins, 1986. Resilience at the level of the plant community. In Dell, B., A. J. M. Hopkins & B. B. Lamont (eds), Resilience in Mediterranean-type Ecosystems. Dr W Junk Publishers, Dordrecht: 1–38.

    Google Scholar 

  • Habit, E., D. Brian & I. Vila, 2006. Current state of knowledge of freshwater fishes of Chile. Gayana 70: 100–113.

    Google Scholar 

  • Haidekker, A. & D. Hering, 2007. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology 42: 463–481.

    Google Scholar 

  • Heads, M., 2009. Globally basal centres of endemism: the Tasman-Coral Sea region (south-west Pacific), Latin America and Madagascar/South Africa. Biological Journal of the Linnean Society 96: 222–245.

    Google Scholar 

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    PubMed  Google Scholar 

  • Hermoso, V., S. Linke & J. Prenda, 2009. Identifying priority sites for the conservation of freshwater fish biodiversity in a mediterranean basin with a high degree of threatened endemics. Hydrobiologia 623: 127–140.

    Google Scholar 

  • Hermoso, V., S. Linke, J. Prenda & H. P. Possingham, 2011. Addressing longitudinal connectivity in the systematic conservation planning of fresh waters. Freshwater Biology 56: 57–70.

    Google Scholar 

  • Hill, J., M. Stellmes, T. Udelhoven, A. Röder & S. Sommer, 2008. Mediterranean desertification and land degradation: mapping related land use change syndromes based on satellite observations. Global and Planetary Change 64: 146–157.

    Google Scholar 

  • Hoffman, A. A. & P. A. Parsons, 1997. Extreme Environmental Change and Evolution. Cambridge University Press, Cambridge.

    Google Scholar 

  • Humphries, P. & D. Baldwin, 2003. Drought and aquatic ecosystems: an introduction. Freshwater Biology 48: 1141–1146.

    Google Scholar 

  • Iglesias, A., L. Garrote, F. Flores & M. Moneo, 2007. Challenges to manage to risk of water scarcity and climate change in the Mediterranean. Water Resources Management 21: 775–788.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007a. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge. [available on internet at http://www.ipcc.ch]

  • IPCC (Intergovernmental Panel on Climate Change), 2007b. Climate change 2007: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge. [available on internet at http://www.ipcc.ch]

  • IUCN, International Union for Conservation of Nature, 2008. IUCN Red List of Threatened Species. IUCN, Gland and Cambridge. [available on internet at http://www.iucnredlist.org]

  • Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.

    PubMed  CAS  Google Scholar 

  • Jennings, M. R. & M. P. Hayes, 1994. Amphibians and Reptile Species of Special Concern in California. California Department of Fish and Game, Sacramento.

    Google Scholar 

  • Jenouvrier, S. & M. E. Visser, 2011. Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach. International Journal of Biometeorology 55: 905–919.

    PubMed  Google Scholar 

  • Jensen, L. F., M. M. Hansen, C. Pertoldi, G. F. Holdensgaard & K.-L. Dons, 2008. Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proceedings of the Royal Society B 275: 2859–2868.

    PubMed  Google Scholar 

  • Johnson, N., C. Revenga & J. Echeverria, 2001. Managing water for people and nature. Science 292: 1071–1072.

    PubMed  CAS  Google Scholar 

  • Kinouchi, T., H. Yagi & M. Miyamoto, 2007. Increase in stream temperature related to anthropogenic heat input from urban wastewater. Journal of Hydrology 335: 78–88.

    Google Scholar 

  • Klausmeyer, K. R. & M. R. Shaw, 2009. Climate change, habitat loss, protected areas and the climate adaptation potential of species in Mediterraenan ecosystems worldwide. PLoS ONE 4: 1–9.

    Google Scholar 

  • Knapp, R. A. & K. R. Matthews, 2000. Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conservation Biology 14: 428–438.

    Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Google Scholar 

  • Lambin, E. F., H. J. Geist & E. Lepers, 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28: 205–241.

    Google Scholar 

  • Lassalle, G. & E. Rochard, 2009. Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Global Change Biology 15: 1072–1089.

    Google Scholar 

  • Lavorel, S., B. Touzard, J. D. Lebreton & B. Clément, 1998. Identifying functional groups for response to disturbance in an abandoned pasture. Acta Oecologica 19: 227–240.

    Google Scholar 

  • Lavorel, S., S. McIntyre & K. Grigulis, 1999. Plant response to disturbance in a mediterranean grassland: how many functional groups? Journal of Vegetation Science 10: 661–672.

    Google Scholar 

  • Lawrence, J. E., K. E. Lunde, R. D. Mazor, L. A. Bêche, E. P. McElravy & V. H. Resh, 2010. Long-term macroinvertebrate response to climate change: implications for biological assessment in mediterranean-climate streams. Journal of the North American Benthological Society 29: 1424–1440.

    Google Scholar 

  • Lawrence, J. E., M. J. Deitch & V. H. Resh, 2011. Effects of vineyard coverage and extent on benthic macroinvertebrates in mediterranean-climate streams of Northern California. Annales de Limnologie. International Journal of Limnology 47: 347–354.

    Google Scholar 

  • Lehner, B., C. R. Liermann, C. Revenga, et al., 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494–502.

    Google Scholar 

  • Lindh, G., 1992. Hydrological and water resources impact of climate change. In Jeftic, L., J. D. Milliman & G. Sestini (eds), Climatic Change and the Mediterranean: Environmental and Societal Impacts of Climatic Changes and Sea-Level Rise in the Mediterranean Region. Edward Arnold, London: 58–93.

    Google Scholar 

  • Lopes-Cunha, M., M. A. Aboim, N. Mesquita, M. J. Alves, I. Doadrio & M. M. Coelho, 2012. Population genetic structure in the Iberian cyprinid fish Iberochondrostoma lemmingii (Steindachner, 1866): disentangling species fragmentation and colonization processes. Biological Journal of the Linnean Society 105: 559–572.

    Google Scholar 

  • López-Rodriguez, M. J., J. M. Tierno de Figueroa & J. Alba-Tercedor, 2009. The life history of Serratella ignita (Poda, 1761) (Insecta: Ephemeroptera) in a temporary and permanent mediterranean stream. Aquatic Sciences 71: 179–188.

    Google Scholar 

  • Lymbery, A. J., M. Hassan, D. L. Morgan, S. J. Beatty & R. G. Doupé, 2010. Parasites of native and exotic freshwater fishes in south-western Australia. Journal of Fish Biology 76: 1770–1785.

    PubMed  CAS  Google Scholar 

  • Lytle, D. A., 2007. Life-history and behavoural daptations to flow regime in aquatic insects. Aquatic insects – challenges to populations. In Lancaster, J. & R. A. Briers (eds), Proceedings of the Royal Entomological Society’s 24th symposium. Preston, UK.

    Google Scholar 

  • Lytle, D. A., M. T. Bogan & D. S. Finn, 2008. Evolution of aquatic insect behaviours across a gradient of disturbance predictability. Proceedings of the Royal Society B 22: 453–462.

    Google Scholar 

  • Maclean, I. M. D. & R. J. Wilson, 2011. Recent ecological responses to climate change support predictions of high extinction risk. Proceedings of the National Academy of Sciences of the United States of America 108: 12337–12342.

    PubMed  CAS  Google Scholar 

  • Magalhães, M. F., D. C. Batalha & M. J. Collares-Pereira, 2002. Gradients in stream fish assemblages across a mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology 47: 1015–1031.

    Google Scholar 

  • Magalhães, M. F., P. Beja & I. J. Schlosser, 2007. Effects of multi-year droughts on fish assemblages of seasonally drying mediterranean streams. Freshwater Biology 52: 1494–1510.

    Google Scholar 

  • Magoulick, D. D. & R. M. Kobza, 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater Biology 48: 1186–1198.

    Google Scholar 

  • Malcolm, J. R., C. Liu, R. P. Neilson, L. Hansen & L. Hannah, 2006. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20: 538–548.

    PubMed  Google Scholar 

  • Mas-Martí, E., E. García-Berthou, S. Sabater, S. Tomanova & I. Muñoz, 2010. Comparing fish assemblages and trophic ecology of permanent and intermittent reaches in a mediterranean stream. Hydrobiologia 667: 167–180.

    Google Scholar 

  • Mata, L. J., M. Campos, E. Basso, R. Compagnucci, P. Fearnside, A. Magrin, J. Marengo, A. R. Moreno, J Suárez, S. Solman, A. Villamizar & L. Villers, 2001. Latin America. In: IPCC, Intergovernmental Panel on Climate Change (eds), Climate change 2001: impacts, adaptation, and vulnerability. Contribution of working group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge: 693–734.

  • Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Chapman & Hall, New York.

    Google Scholar 

  • Maurer, E. P. & P. B. Duffy, 2005. Uncertainty in projections of streamflow changes due to climate change in California. Geophysical Research Letters 32: L03704.

    Google Scholar 

  • Mazor, R., A. Purcell & V. H. Resh, 2009. Long-term variability in benthic macroinvertebrate bioassessments: a 20-year study from two northern Californian streams. Environmental Management 43: 1269–1286.

    PubMed  Google Scholar 

  • McCarty, J. P., 2001. Ecological consequences of recent climate change. Conservation Biology 15: 320–331.

    Google Scholar 

  • McCarthy, I. D., E. Moksness, D. A. Pavlov & D. F. Houlihan, 1999. Effects of water temperature on protein synthesis and protein growth in juvenile Atlantic wolffish (Anarhichas lupus). Canadian Journal of Fisheries and Aquatic Sciences 56: 231–241.

    CAS  Google Scholar 

  • Merelender, A. M. & M. K. Matella, 2012. Maintaining and restoring hydrologic habitat connectivity for aquatic species recovery: an integrated modeling framework. Hydrobiologia, this issue.

  • Milly, P. C. D., K. A. Dunne & A. V. Vecchia, 2005. Global pattern of trends in stream flow and water availability in a changing climate. Nature 438: 347–350.

    PubMed  CAS  Google Scholar 

  • Moreno, J. M. & W. C. Oechel, 1995. Global Change and Mediterranean-Type Ecosystems. Springer, New York.

    Google Scholar 

  • Moriondo, M., P. Good, R. Durao, M. Bindi, C. Gianakopoulos & J. Corte-Real, 2006. Potential impact of climate change on fire risk in the Mediterranean area. Climate Research 31: 85–95.

    Google Scholar 

  • Moyle, P. B., 1995. Conservation of native freshwater fishes in the mediterranean-type climate of California, USA: a review. Biological Conservation 72: 271–279.

    Google Scholar 

  • Munné, A. & N. Prat, 2011. Effects of mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecological Indicators 11: 651–662.

    Google Scholar 

  • Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. Da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.

    PubMed  CAS  Google Scholar 

  • Nelson, K. C. & M. A. Palmer, 2007. Stream temperature surges under urbanization and climate change: data models, models, and responses. Journal of the American Water Resources Association 43: 440–452.

    Google Scholar 

  • Nicola, G. G., A. Almodóvar & B. Elvira, 2009. Influence of hydrologic attributes on brown trout recruitment in low-latitude range margins. Oeologia 160: 515–524.

    Google Scholar 

  • Ohlberger, J., E. Edeline, L. A. Vollestad, N. C. Stenseth & D. Claessen, 2011. Temperature-driven regime shifts in the dynamics of size-structured populations. The American Naturalist 177: 211–223.

    PubMed  Google Scholar 

  • Olden, J. D. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86–107.

    Google Scholar 

  • Opperman, J. J., G. E. Galloway, J. Fargione, J. F. Mount, B. D. Richter & S. Secchi, 2009. Sustainable floodplains through large-scale reconnection to rivers. Science 326: 1487–1488.

    PubMed  CAS  Google Scholar 

  • Otero, I., M. Boada, A. Badiab, E. Plac, J. Vayredac, S. Sabaté, C. A. Gracia & J. Peñuelas, 2011. Loss of water availability and stream biodiversity under land abandonment and climate change in a mediterranean catchment (Olzinelles, NE Spain). Land Use Policy 28: 207–218.

    Google Scholar 

  • Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 636–637.

    Google Scholar 

  • Parmesan, C. & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    PubMed  CAS  Google Scholar 

  • Pausas, J. G., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean Basin). Climatic Change 63: 337–350.

    Google Scholar 

  • Pearson, R. G. & T. P. Dawson, 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361–371.

    Google Scholar 

  • Pires, D. F., A. M. Pires, M. J. Collares-Pereira & M. F. Magalhães, 2010. Variation in fish assemblages across dry-season pools in a mediterranean stream: effects of pool morphology, physicochemical factors and spatial context. Ecology of Freshwater Fish 19: 74–86.

    Google Scholar 

  • Poff, N. L., B. D. Richter, A. H. Arthington, S. E. Bunn, R. J. Naiman, E. Kendy, M. Acreman, C. Apse, B. P. Bledsoe, M. C. Freeman, J. Henriksen, R. B. Jacobson, J. G. Kennen, D. M. Merritt, J. H. O’Keeffe, J. D. Olden, K. Rogers, R. E. Tharme & A. Warner, 2010. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshwater Biology 55: 147–170.

    Google Scholar 

  • Pounds, J. A. & M. L. Crump, 1994. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conservation Biology 8: 72–85.

    Google Scholar 

  • Pounds, J. A., M. P. L. Fogden & J. H. Campbell, 1999. Biological response to climate change on a tropical mountain. Nature 398: 611–615.

    CAS  Google Scholar 

  • Pounds, J. A., M. P. L. Fogden & K. L. Masters, 2005. Case study: responses of natural communities to climate change in a highland forest. In Lovejoy, T. E. & L. Hannah (eds), Climate Change and Biodiversity. Yale University Press, London: 70–74.

    Google Scholar 

  • Power, M. E., M. S. Parker & W. E. Dietrich, 2008. Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs 78: 263–282.

    Google Scholar 

  • Rahel, F. J. & J. D. Olden, 2008. Assessing the effects of climate change on aquatic invasive species. Conservation Biology 22: 521–533.

    PubMed  Google Scholar 

  • Resh, V. H., L. A. Bêche, J. E. Lawrence, R. D. Mazor, E. P. McElravy, A. P. O’Dowd & S. M. Carlson, 2012. Long-term population and community patterns of benthic macroinvertebrates and fishes in Northern California mediterranean-climate streams. Hydrobiologia, this issue.

  • Robson, B. J., T. G. Matthews, P. R. Lind & N. A. Thomas, 2008. Pathways for algal recolonization in seasonally-flowing streams. Freshwater Biology 53: 2385–2401.

    Google Scholar 

  • Robson, B. J., E. T. Chester & C. M. Austin, 2011. Why life history information matters: drought refuges and macroinvertebrate persistence in non-perennial streams subject to a drier climate. Marine and Freshwater Research 62: 801–810.

    CAS  Google Scholar 

  • Rogado, L., P. J. Alexandrino, P. R. Almeida, M. J. Alves, J. Bochechas, R. V. Cortes, M. I. Domingos, A. F. Filipe, J. Madeira & M. F. Magalhães, 2005. Peixes dulciaquícolas e migradores. In Cabral, M. J., J. Almeida, P. R. Almeida, T. Dellinger, N. Ferrand de Almeida, M. E. Oliveira, J. M. Palmeirim, A. I. Queirós, L. Rogado & M. Santos-Reis (eds), Livro Vermelho dos Vertebrados de Portugal. Instituto da Conservação da Natureza, Lisboa: 63–114.

    Google Scholar 

  • Rodríguez, J. M., 2011. Trithemis kirbyi ardens (Gerstaecker, 1891) (Odonata: Libellulidae): datos de campo sobre su ecología en el Sur de España y primeros registros para la provincia de Sevilla (España). Métodos en Ecología y Sistemática 6: 10.

    Google Scholar 

  • Romero, M. F., 1981. Un odonato nuevo para la fauna Ibérica, Trithemis annulata (Palisot de Bemvais, l805) (Anisoptera, Libellulidae). Boletín Asociación Española de Entomología 4: 191–193.

    Google Scholar 

  • Rundel, P. W., 1998. Landscape disturbance in mediterranean–type ecosystems: an overview. In Rundel, P. W., G. Montenegro & F. M. Jaksic (eds), Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems. Ecological Studies 136. Springer, Berlin: 3–22.

    Google Scholar 

  • Sabater, F., H. Guash, E. Martí & J. Armengol, 1995. The River Ter: a mediterranean river case study in Spain. Ecosystems of the World 22: 419.

    Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, et al., 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    PubMed  CAS  Google Scholar 

  • Saunders, D. L., J. J. Meeuwig & A. C. J. Vincent, 2002. Freshwater protected areas: strategies for conservation. Conservation Biology 16: 30–41.

    Google Scholar 

  • Skelton, P. H., J. A. Cambray, A. Lombard & G. A. Benn, 1995. Patterns of distribution and conservation status of freshwater fishes in South Africa. South African Journal of Zoology 30: 71–81.

    Google Scholar 

  • Slaughter, R. A. & J. D. Wiener, 2007. Water, adaptation, and property rights on the Snake and Klamath Rivers. Journal of the American Water Resources Association 43: 308–321.

    Google Scholar 

  • Smith, K. G. & W. R. T. Darwall, 2006. The Status and Distribution of Freshwater Fish Endemic in the Mediterranean Basin. IUCN, International Union for Conservation of Nature, Glandand and Cambridge.

    Google Scholar 

  • Soto, D., I. Arismendi, J. González, J. Sanzana, F. Jara, C. Jara, E. Guzmán & A. Lara, 2006. Southern Chile, trout and salmon country: invasion patterns and threats for native species. Revista Chilena de Historia Natural 79: 97–117.

    Google Scholar 

  • Statzner, B., N. Bonada & S. Dolédec, 2007a. Conservation of taxonomic and biological trait diversity of European stream macroinvertebrate communities: a case for a collective public database. Biodiversity and Conservation 16: 3609–3632.

    Google Scholar 

  • Statzner, B., N. Bonada & S. Dolédec, 2007b. Biological attributes discriminating invasive from native European stream macroinvertebrates. Biological Invasions 10: 517–530.

    Google Scholar 

  • Stenseth, N. C. & A. Mysterud, 2002. Climate, changing phenology, and other life history traits: nonlinearity and match–mismatch to the environment. Proceedings of the National Academy of Sciences of the United States of America 99: 13379–13381.

    PubMed  CAS  Google Scholar 

  • Stenseth, N. C., A. Mysterud, G. Ottersen, J. W. Hurrell, K.-S. Chan & M. Lima, 2002. Ecological effects of climate fluctuations. Science 297: 1292–1296.

    PubMed  CAS  Google Scholar 

  • Souvignet, M., H. Gaese, L. Ribbe, N. Kretschmer & R. Oyarzun, 2008. Climate change impacts on water availability in the Arid Elqui valley, North Central Chile: a preliminary assessment. IWRA, International Water Resources Association, World Water Congress, Montpellier.

    Google Scholar 

  • Tague, C., L. Seaby & A. Hope, 2009. Modelling the eco-hydrologic response of a mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies. Climatic Change 93: 135–137.

    Google Scholar 

  • Tebaldi, C., K. Hayhoe, J. M. Arblaster & G. A. Meehl, 2006. Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change 79: 185–211.

    Google Scholar 

  • Tierno de Figueroa, J. M., M. J. López-Rodríguez, S. Fenoglio, P. Sánchez-Castillo & R. Fochetti, 2012. Freshwater biodiversity in the rivers of the Mediterranean Basin. Hydrobiologia. doi:10.1007/s10750-012-1281z.

  • Tierno de Figueroa, J. M., M. J. López-Rodríguez, A. Lorenz, W. Graf, A. Schmidt-Kloiber & D. Hering, 2010. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodiversity and Conservation 19: 1269–1277.

    Google Scholar 

  • Thuiller, W., 2007. Biodiversity – climate change and the ecologist. Nature 448: 550–552.

    PubMed  CAS  Google Scholar 

  • Trenberth, K.E. & S. A. Josey, 2007. Observations: surface and atmospheric climate change. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to The Fourth Assessment Report of The Intergovernmental Panel On Climate Change. Cambridge University Press, Cambridge: 235–336.

  • Underwood, E. C., J. H. Viers, K. R. Klausmeyer, R. L. Cox & M. Shaw, 2009. Threats and biodiversity in the mediterranean biome. Diversity and Distributions 15: 188–197.

    Google Scholar 

  • Van der Putten, W. H., M. Macel & E. V. Vissel, 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society of London – Series B 365: 2025–2034.

    PubMed  Google Scholar 

  • Van Doorslaer, W., R. Stoks, I. Swillen, H. Feuchtmayr, D. Atkinson, B. Moss & L. De Meester, 2010. Experimental thermal microevolution in community-embedded Daphnia populations. Climate Research 43: 81–89.

    Google Scholar 

  • Van Rensburg, B. J., M. A. McGeoch, S. L. Chown & A. S. Van Jaarsveld, 1999. Conservation of heterogeneity among dung beetles in the Maputaland Centre of Endemism, South Africa. Biological Conservation 88: 145–153.

    Google Scholar 

  • Vicuña, S., R. D. Garreaud & J. Mcphee, 2010. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change 105: 469–488.

    Google Scholar 

  • Viers, J. H. & D. E. Rheinheimer, 2011. Freshwater conservation options for a changing climate in California’s Sierra Nevada. Marine and Freshwater Research 62: 266–278.

    CAS  Google Scholar 

  • Vila-Gispert, A., C. Alcaraz & E. Garcia-Berthou, 2005. Life-history traits of invasive fish in small mediterranean streams. Biological Invasions 7: 107–116.

    Google Scholar 

  • Visser, M. E., 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B 275: 649–659.

    PubMed  Google Scholar 

  • Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. Reidy Liermannm & P. M. Davies, 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    PubMed  Google Scholar 

  • Walther, G. R., E. Post, P. Convery, A. Menzel, C. Parmesan, T. J. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    PubMed  CAS  Google Scholar 

  • Webb, B. W., D. M. Hannah, R. Dan Moore, L. E. Brown & F. Nobilis, 2008. Recent advances in stream and river temperature research. Hydrological Processes 22: 902–918.

    Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Google Scholar 

  • Wintle, B. A., S. A. Bekessy, D. A. Keith, B. W. van Wilgen, M. Cabeza, B. Schröder, S. B. Carvalho, A. Falcucci, L. Maiorano, T. J. Regan, C. Rondinini, L. Boitani & H. P. Possingham, 2011. Ecological-economic optimization of biodiversity conservation under climate change. Nature Climate Change 1: 355–359.

    Google Scholar 

  • Wolff, S. W., T. A. Wesche & W. Hubert, 1989. Stream channel and habitat changes due to flow augmentation. Regulated Rivers and Management 4: 225–233.

    Google Scholar 

  • Woodward, G., D. M. Perkins & L. E. Brown, 2010. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philosophical Transactions of the Royal Society of London B 365: 2093–2106.

    Google Scholar 

  • Worm, B., R. Hilborn, J. K. Baum, T. A. Branch, et al., 2009. Rebuilding Global Fisheries. Science 325: 578–585.

    PubMed  CAS  Google Scholar 

  • Xenopoulos, M. A., D. M. Lodge, J. Alcamo, M. Märker, K. Schulze & D. P. Van Vuuren, 2005. Scenarios of freshwater fish extinctions from climate change and water withdrawal. Global Change Biology 11: 1557–1564.

    Google Scholar 

  • Yarnell, S. M., J. H. Viers & J. F. Mount, 2010. Ecology and management of the spring snowmelt recession. BioScience 60: 114–127.

    Google Scholar 

  • Yates, C. J., J. Elith, A. M. Latimer, D. L. Maitre, G. F. Midgely, F. M. Shurr & A. G. West, 2010. Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology 35: 374–391.

    Google Scholar 

  • Zamora-Muñoz, C., A. Sánchez-Ortega & J. Alba-Tercedor, 2008. Physico-chemical factors that determine the distribution of mayflies and stoneflies in a high-mountain stream in Southern Europe (Sierra Nevada, Southern Spain). Aquatic Insects 15: 11–20.

    Google Scholar 

Download references

Acknowledgments

Current research was supported by the BioFresh EU project- Biodiversity of Freshwater Ecosystems: Status, Trends, Pressures and Conservation Priorities (7th FWP contract No 226874) and the United States National Science Foundation (NSF) Engineering Research Center (ERC) for Re-inventing the Nation’s Urban Water Infrastructure (ReNUWIt). The authors thank the anonymous reviewers for comments that truly helped in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Filipa Filipe.

Additional information

Guest editors: N. Bonada & V. H. Resh / Streams in Mediterranean-climate regions: lessons learned from the last decade

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipe, A.F., Lawrence, J.E. & Bonada, N. Vulnerability of stream biota to climate change in mediterranean climate regions: a synthesis of ecological responses and conservation challenges. Hydrobiologia 719, 331–351 (2013). https://doi.org/10.1007/s10750-012-1244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1244-4

Keywords

Navigation