Skip to main content
Log in

Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition

  • EUROPEAN SURFACE WATERS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Macroinvertebrates are one of the key components of lake ecosystems and are required to be monitored alongside other biological groups to define ecological status according to European Union legislation. Macroinvertebrate communities are highly variable and complex and respond to a diverse series of environmental conditions. The purpose of this study was to examine the relative importance of environmental variables in explaining macroinvertebrate abundance. A total of 45 sub-alpine lakes were sampled for macroinvertebrates in the shallow sublittoral. Environmental variables were grouped into four types: (1) aquatic physical and chemical parameters, (2) littoral and riparian habitat, (3) lake morphometric parameters and (4) sediment chemical characteristics. Nonparametric multiplicative regression (NPMR) was used to model the abundance of individual macroinvertebrate taxa. Significant models were produced for nine out of the 24 taxa examined. Sediment characteristics were the group most frequently included in models and also the factors to which taxa abundance was the most sensitive. Aquatic physical and chemical variables were the next group most frequently included in models although chlorophyll a was not included in any of the models and total phosphorus in only one. This indicates that many taxa may not show a direct easily interpretable response to eutrophication pressure. Lake morphometric factors were included in several of the models although the sensitivity of macroinvertebrate abundance tended to be lower than for sediment and aquatic physical and chemical factors. Habitat factors were only included in three models although riparian vegetation was found to have a significant influence on the abundance of Ephemera danica indicating that ecotone integrity is likely to play a role in its ecology. Overall, the models tended to be specific for species with limited commonality across taxa. Models produced by NPMR indicate that the response of macroinvertebrates to environmental variables can be successfully described but further research is required focussing in more detail on the response of key taxa to relevant environmental parameters and anthropogenic pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bazzanti, M., M. Seminara & C. Tamorri, 1994. Depth distribution and relationships to the trophic state of sublittoral and profundal macrobenthos in lake Vico (Central Italy). Limnologica 24: 13–21.

    Google Scholar 

  • Brauns, M., X. F. Garcia, M. T. Pusch & N. Walz, 2007a. Eulittoral macroinvertebrate communities of lowland lakes: discrimination among trophic states. Freshwater Biology 52: 1022–1032.

    Article  Google Scholar 

  • Brauns, M., X. F. Garcia, N. Walz & M. T. Pusch, 2007b. Effects of human shoreline development on littoral macroinvertebrates in lowland lakes. Journal of Applied Ecology 44: 1138–1144.

    Article  Google Scholar 

  • Brauns, M., X. F. Garcia & M. T. Pusch, 2008. Potential effects of water-level fluctuations on littoral invertebrates in lowland lakes. Hydrobiologia 613: 5–12.

    Article  Google Scholar 

  • Brodersen, K. P., P. C. Dall & C. Lindegaard, 1998. The fauna in the upper stony littoral of Danish lakes: macroinvertebrates as trophic indicators. Freshwater Biology 39: 577–592.

    Article  Google Scholar 

  • De Lange, H. J., E. M. De Haas, H. Maas & E. T. H. M. Peeters, 2005. Contaminated sediments and bioassay responses of three macroinvertebrates, the midge larva Chironomus riparius, the water louse Asellus aquaticus and the mayfly nymph Ephoron virgo. Chemosphere 61: 1700–1709.

    Article  PubMed  CAS  Google Scholar 

  • Declerck, S., J. Vandekerkhove, L. Johansson, K. Muylaert, J. M. Conde-Porcuna, K. Van der Gucht, C. Pérez-Martínez, T. Lauridsen, K. Schwenk, G. Zwart, W. Rommens, J. López-Ramos, E. Jeppesen, W. Vyverman, L. Brendonck & L. De Meester, 2005. Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86: 1905–1915.

    Article  Google Scholar 

  • Directive, 2000. Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for community action in the field of water policy. Official Journal of the European Communities L 327: 1–72.

    Google Scholar 

  • Eisenreich, S. J., R. T. Bannerman & D. E. Armstrong, 1975. A simplified phosphorus analysis technique. Environmental Letters 9: 43–53.

    CAS  Google Scholar 

  • Ellis, C. J., B. J. Coppins, T. P. Dawson & M. R. D. Seaward, 2007. Response of British lichens to climate change scenarios: trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation 140: 217–235.

    Article  Google Scholar 

  • France, R. L., 1995. Macroinvertebrate standing crop in littoral regions of allochthonous detritus accumulation: implications for forest management. Biological Conservation 71: 35–39.

    Article  Google Scholar 

  • France, R. L. & P. M. Stokes, 1988. Isoetid-zoobenthos associations in acid-sensitive lakes in Ontario, Canada. Aquatic Botany 32: 99–114.

    Article  Google Scholar 

  • Free, G., R. Little, D. Tierney, K. Donnelly, & R. Caroni, 2006. A Reference Based Typology and Ecological Assessment System for Irish lakes. Preliminary Investigations. Environmental Protection Agency, Wexford [http://www.epa.ie].

  • Free, G., J. Bowman, M. McGarrigle, R. Caroni, K. Donnelly, D. Tierney, W. Trodd & R. Little, 2009. The identification, characterization and conservation value of isoetid lakes in Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 264–273.

    Article  Google Scholar 

  • Gherardi, F. & P. Acquistapace, 2007. Invasive crayfish in Europe: the impact of Procambarus clarkii on the littoral community of a Mediterranean lake. Freshwater Biology 52: 1249–1259.

    Article  Google Scholar 

  • HACH, 1997. HACH DR/2000 Spectrophotometer Handbook. HACH, Colorado.

    Google Scholar 

  • Hämäläinen, H., H. Luotonen, E. Koskenniemi & P. Liljaniemi, 2003. Inter-annual variation in macroinvertebrate communities in a shallow forest lake in eastern Finland during 1990-2001. Hydrobiologia 506–509: 389–397.

    Article  Google Scholar 

  • Heino, J., 2000. Lentic macroinvertebrate assemblage structure along gradients in spatial heterogeneity, habitat size and water chemistry. Hydrobiologia 418: 229–242.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Irvine, K., N. Allott, E. deEyto, G. Free, J. White, R. Caroni, C. Kennelly, J. Keaney, C. Lennon, A. Kemp, E. Barry, S. Day, P. Mills, G. O’Riain, B. Quirke, H. Twomey & P. Sweeney, 2001. Ecological Assessment of Irish Lakes. Environmental Protection Agency, Wexford.

    Google Scholar 

  • James, M. R., M. Weatherhead, C. Stanger & E. Graynoth, 1998. Macroinvertebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand – effects of habitat stability, wind exposure and macrophytes. New Zealand Journal of Marine and Freshwater Research 32: 287–305.

    Google Scholar 

  • Johnson, R. K., 1998. Spatiotemporal variability of temperate lake macroinvertebrate communities: detection of impact. Ecological Applications 8: 61–70.

    Article  Google Scholar 

  • Jokinen, E. H., 1985. Comparative life history patterns within a littoral zone snail community. Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie 22: 3292–3299.

    Google Scholar 

  • Jónasson, P. M., 1978. Zoobenthos of lakes. Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie 20: 13–37.

    Google Scholar 

  • Langdon, P. G., Z. Ruiz, K. P. Brodersen & I. D. L. Foster, 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology 51: 562–577.

    Article  CAS  Google Scholar 

  • Lewin, W. C., N. Okun & T. Mehner, 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshwater Biology 49: 410–424.

    Article  Google Scholar 

  • Little, R., J. Bowman, M. L. McGarrigle, G. Free, K. Donnelly, D. Tierney, R. Caroni & K. Irvine, 2006. Implementation of the Water Framework Directive: investigations for establishing a lake typology using littoral macroinvertebrates in the Republic of Ireland. Verhandlungen der internationalen Vereinigung für theoretische und angewandte Limnologie 29: 2192–2196.

    Google Scholar 

  • Lods-Crozet, B. & J. B. Lachavanne, 1994. Changes in the chironomid communities in Lake Geneva in relation with eutrophication, over a period of 60 years. Archiv für Hydrobiologie 130: 453–471.

    Google Scholar 

  • Lyche Solheim, A. & R. D. Gulati, 2008. Preface: ‘Quantitative ecological responses for the Water Framework Directive related to eutrophication and acidification of European lakes’. Aquatic Ecology 42: 179–181.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1989. Water Analysis. Freshwater Biological Association, Cumbria.

    Google Scholar 

  • Mastrantuono, L., A. G. Solimini, P. Nõges & M. Bazzanti, 2008. Plant-associated invertebrates and hydrological balance in the large volcanic Lake Bracciano (Central Italy) during two years with different water levels. Hydrobiologia 599: 143–152.

    Article  Google Scholar 

  • McCune, B., 2006a. Nonparametric Multiplicative Regression for Habitat Modeling. Oregon State University, Oregon.

    Google Scholar 

  • McCune, B., 2006b. Non-parametric habitat models with automatic interactions. Journal of Vegetation Science 17: 819–830.

    Article  Google Scholar 

  • McCune, B. & M. J. Mefford, 2004. HyperNiche. Nonparametric Multiplicative Habitat Modeling (Version 1.12). MjM Software, Oregon.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 2006. PC-ORD. Multivariate Analysis of Ecological Data. Version 5.10. MjM Software, Oregon.

    Google Scholar 

  • Moss, B., D. Stephen, C. Alvarez, E. Becares, W. van de Bund, S. E. Collings, E. Van Donk, E. De Eyto, T. Feldmann, C. Fernández-Aláez, M. Fernandez-Alaez, R. J. M. Franken, F. García-Criado, E. M. Gross, M. Gyllström, L. A. Hansson, K. Irvine, A. Järvalt, J. P. Jensen, E. Jeppesen, T. Kairesalo, R. Kornijów, T. Krause, H. Künnap, A. Laas, E. Lill, B. Lorens, H. Luup, M. R. Miracle, P. Nõges, T. Nõges, M. Nykänen, I. Ott, W. Peczula, E. T. H. M. Peeters, G. Phillips, S. Romo, V. Russell, J. Salujõe, M. Scheffer, K. Siewertsen, H. Smal, C. Tesch, H. Timm, L. Tuvikene, I. Tõnno, T. Virro, E. Vicente & D. Wilson, 2003. The determination of ecological status in shallow lakes – a tested system (ECOFRAME) for implementation of the European Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 507–549.

    Article  Google Scholar 

  • Naiman, R. J. & H. Décamps, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658.

    Article  Google Scholar 

  • Nürnberg, G. K., 1995. Quantifying anoxia in lakes. Limnology and Oceanography 406: 1100–1111.

    Article  Google Scholar 

  • Ostendorp, W., 2004. New approaches to integrated quality assessment of lakeshores. Limnologica 34: 160–166.

    Google Scholar 

  • Ostendorp, W., K. Schmieder & K. Jöhnk, 2004. Assessment of human pressures and their hydromorphological impacts on lakeshores in Europe. Ecohydrology & Hydrobiology 4: 379–395.

    Google Scholar 

  • O’Toole, C., I. Donohue, S. J. Moe & K. Irvine, 2008. Nutrient optima and tolerances of benthic invertebrates, the effects of taxonomic resolution and testing of selected metrics in lakes using an extensive European data base. Aquatic Ecology 42: 277–291.

    Article  CAS  Google Scholar 

  • Palmer, M., 1981. Relationship between species richness of macrophytes and insects in some water bodies in the Norfolk Breckland. Entomologist’s Monthly Magazine 117: 35–46.

    Google Scholar 

  • Penning, W. E., B. Dudley, M. Mjelde, S. Hellsten, J. Hanganu, A. Kolada, M. Van den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Using aquatic macrophyte community indices to define the ecological status of European lakes. Aquatic Ecology 42: 253–264.

    Article  CAS  Google Scholar 

  • Pilotto, F., G. Free, G. Crosa, F. Sena, M. Ghiani & A. C. Cardoso, 2008. The invasive crayfish Orconectes limosus in Lake Varese: estimating abundance and population size structure in the context of habitat and methodological constraints. Journal of Crustacean Biology 28: 633–640.

    Article  Google Scholar 

  • Premazzi, G., A. Provini, G. F. Gaggino & G. Parise, 1986. Geochemical trends in sediments from 13 Italian subalpine lakes. In Sly, P. G. (ed.), Sediments and Water Interactions. Springer, New York: 157–165.

    Google Scholar 

  • Rennie, M. D. & L. J. Jackson, 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Canadian Journal of Fisheries and Aquatic Sciences 62: 2088–2099.

    Article  CAS  Google Scholar 

  • Riccardi, N., G. Giussani & L. Lagorio, 2002. Morphological variation and life history changes of a Daphnia hyalina population exposed to Chaoborus flavicans larvae predation (L. Candia, Northern Italy). Journal of Limnology 61: 41–48.

    Google Scholar 

  • Rossaro, B., L. Marziali, A. C. Cardoso, A. G. Solimini, G. Free & R. Giacchini, 2007. A biotic index using benthic macroinvertebrates for Italian lakes. Ecological Indicators 7: 412–429.

    Article  Google Scholar 

  • Rowan, J. S., R. W. Duck, J. Carwardine, O. M. Bragg, A. R. Black & M. E. J. Cutler, 2004. Development of a Technique for Lake Habitat Survey (LHS): Phase 1. SNIFFER, Edinburgh.

    Google Scholar 

  • Rowan, J. S., J. Carwardine, R. W. Duck, O. M. Bragg, A. R. Black, M. E. J. Cutler, I. Soutar & P. J. Boon, 2006. Development of a technique for lake habitat survey (LHS) with applications for the European Union Water Framework Directive. Aquatic Conservation: Marine and Freshwater Ecosystems 16: 637–657.

    Article  Google Scholar 

  • Salmaso, N., G. Morabito, L. Garibaldi & R. Mosello, 2007. Trophic development of the deep lakes south of the Alps: a comparative analysis. Archiv für Hydrobiologie 170(3): 177–196.

    CAS  Google Scholar 

  • Solimini, A. G., G. Free, I. Donohue, K. Irvine, M. Pusch, B. Rossaro, L. Sandin & A. C. Cardoso, 2006. Using benthic macroinvertebrates to assess ecological status of lakes. Current knowledge and way forward to support WFD implementation. EUR 22347 EN.

  • Souty-Grosset, C., D. M. Holdich, P. Y. Noël, J. D. Reynolds & P. Haffner, 2006. Atlas of Crayfish in Europe. Muséum National d’Histoire Naturelle, Paris.

    Google Scholar 

  • Specziár, A. & L. Vörös, 2001. Long-term dynamics of Lake Balaton’s chironomid fauna and its dependence on the phytoplankton production. Archiv für Hydrobiologie 152: 119–142.

    Google Scholar 

  • Spence, D. N. H., 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12: 37–125.

    Article  Google Scholar 

  • Standing Committee of Analysts, 1980. The Determination of Chlorophyll a in Aquatic Environments 1980. Her Majesty’s Stationary Office, London.

    Google Scholar 

  • Stoffels, R. J., K. R. Clarke & G. P. Closs, 2005. Spatial scale and benthic community organisation in the littoral zones of large oligotrophic lakes: potential for cross-scale interactions. Freshwater Biology 50: 1131–1145.

    Article  Google Scholar 

  • Tolonen, K. T., H. Hämäläinen, I. J. Holopainen & J. Karjalainen, 2001. Influences of habitat type and environmental variables on littoral macroinvertebrate communities in a large lake system. Archiv für Hydrobiologie 152: 39–67.

    Google Scholar 

  • Tóth, L. G., S. Poikane, W. E. Penning, G. Free, H. Mäemets, A. Kolada & J. Hanganu, 2008. First steps in the Central-Baltic intercalibration exercise on lake macrophytes: where do we start? Aquatic Ecology 42: 265–275.

    Article  Google Scholar 

  • Trigal, C., F. García-Criado & C.-F. Aláez, 2007. Macroinvertebrate communities of Mediterranean ponds (North Iberian Plateau): importance of natural and human-induced variability. Freshwater Biology 52: 2042–2055.

    Article  Google Scholar 

  • Vaccaro, S., E. Sobiecka, S. Contini, G. Locoro, G. Free & B. M. Gawlik, 2007. The application of positive matrix factorization in the analysis, characterisation and detection of contaminated soils. Chemosphere 69: 1055–1063.

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard, O. & K. Sand-Jensen, 2000. Aquatic macrophytes richness in Danish lakes in relation to alkalinity, transparency, and lake area. Canadian Journal of Fisheries and Aquatic Sciences 57: 2022–2031.

    Article  Google Scholar 

  • Weatherhead, M. A. & M. R. James, 2001. Distribution of macroinvertebrates in relation to physical and biological variables in the littoral zone of nine New Zealand lakes. Hydrobiologia 462: 115–129.

    Article  Google Scholar 

  • White, J. & K. Irvine, 2003. The use of littoral mesohabitats and their macroinvertebrate assemblages in the ecological assessment of lakes. Aquatic Conservation: Marine and Freshwater Ecosystems 13: 331–351.

    Article  Google Scholar 

  • Wright, J. F., P. D. Hiley & A. D. Berrie, 1981. A 9-year study of the life cycle of Ephemera danica Müll. (Ephemeridae: Ephemeroptera) in the River Lambourn, England. Ecological Entomology 6: 321–331.

    Article  Google Scholar 

  • Yost, A. C., 2008. Probabilistic modeling and mapping of plant indicator species in a Northeast Oregon industrial forest, USA. Ecological Indicators 8: 46–56.

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the EEWAI action leader Anna-Stiina Heiskanen, and Geraldine Barry and Rudi Tranquillini of the Technology Transfer and Scientific Co-operation unit of the European Commission for providing funding and advice. We thank Vesela Evtimova, Enrico Rodari and Jo Pinto Grande of the Joint Research Centre for technical assistance. We thank Markus Reichmann, Gernot Winkler, Sabine Bauer, Johanna Mildner and Julia Oberauer of the Kärntner Institut Für Seenforschung for assistance with field work in Austria and Germany. We thank all the land owners and local authorities that assisted and granted access to the lakes. Georg Hanke and Jan Wollgast kindly loaned equipment. We thank the guest editors Wouter van de Bund and Peeter Nõges, and also the three anonymous reviewers for their help in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Free.

Additional information

Guest editors: P. Nõges, W. van de Bund, A. C. Cardoso, A. Solimini & A.-S. Heiskanen

Assessment of the Ecological Status of European Surface Waters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Free, G., Solimini, A.G., Rossaro, B. et al. Modelling lake macroinvertebrate species in the shallow sublittoral: relative roles of habitat, lake morphology, aquatic chemistry and sediment composition. Hydrobiologia 633, 123–136 (2009). https://doi.org/10.1007/s10750-009-9869-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-9869-7

Keywords

Navigation