Skip to main content

Advertisement

Log in

Exploration of the influence of global warming on the chironomid community in a manipulated shallow groundwater system

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Uncertainty about predicted effects of global warming on freshwater ecosystems led us to manipulate the thermal regime of a shallow groundwater ecosystem. The study area was separated into a control and treatment block using a sheet-metal groundwater divide to a depth of 1 m. Temperatures were increased according to General Circulation Model (GCM) projections for Southern Ontario, Canada. We examined the response of the groundwater chironomid community during pre-manipulation, manipulation and recovery periods. We found that warming decreased the total abundance of chironomids whereas no significant change in taxonomic richness was apparent. Interestingly, taxon composition changed markedly during both the manipulation and the recovery period. Whereas Heterotrissocladius disappeared during the manipulation in the treatment block, other coldstenothermal taxa such as Micropsectra, Parametriocnemus and Heleniella remained unaffected. Conversely, Corynoneura, Polypedilum and Thienemannia gracilis disappeared but were not reported as coldstenothermal. The chironomid community composition in the system changed from a Heterotrissocladius, Brillia, and Tanytarsini-dominated community during the pre-manipulation towards one dominated by Parametriocnemus, Polypedilum, Orthocladius/Cricotopus and Corynoneura during the recovery. Although increased temperature had a strong effect, chironomid occurrence was also influenced by a number of other abiotic variables, such as dissolved oxygen, depth, ammonia concentration and TDS (Total dissolved solids).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, G. A. & D. H. Wall, 2000. Biodiversity above and below the surface of soils and sediments: linkages and implications for global change. Bioscience 50: 1043–1048.

    Article  Google Scholar 

  • Araújo, M. B., R. G. Pearson, W. Thuiller & M. Erhard, 2005. Validation of species–climate impact models under climate change. Global Change Biology 11: 1504–1513.

    Article  Google Scholar 

  • Baker, M. A., C. N. Dahm & H. M. Valett, 2000. Anoxia, anaerobic metabolism, and biogeochemistry of the stream-water-groundwater interface. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, Boston: 259–283.

    Chapter  Google Scholar 

  • Baulch, H. M., D. W. Schindler, M. A. Turner, D. L. Findlay, M. J. Paterson & R. D. Vinebrooke, 2005. Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnology and Oceanography 50: 1377–1392.

    Article  Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2001. Chironomid-inferred air temperatures from Late-glacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20: 1723–1741.

    Article  Google Scholar 

  • Burgmer, T., H. Hillebrand & M. Pfenninger, 2007. Effects of climate driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151: 93–103.

    Article  PubMed  CAS  Google Scholar 

  • Covich, A. P., S. C. Fritz, P. J. Lamb, R. D. Marzolf, W. J. Matthews, K. A. Poiani, E. E. Prepas, M. B. Richman & T. C. Winter, 1997. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrological Processes 11: 993–1021.

    Article  Google Scholar 

  • Danks, H. V. & D. D. Williams, 1991. Arthropods of springs, with particular reference to Canada: synthesis and needs for research. Memoirs of the Entomological Society of Canada 155: 203–217.

    Google Scholar 

  • Daufresne, M., M. C. Roger, H. Capra & N. Lamouroux, 2003. Long-term changes within the invertebrate and fish communities of the upper Rhône River: effects of climatic factors. Global Change Biology 10: 124–140.

    Article  Google Scholar 

  • Davis, A. J., L. S. Jenkinson, J. H. Lawton, B. Shorrocks & S. Wood, 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature 391: 783–786.

    Article  PubMed  CAS  Google Scholar 

  • Franken, R. J. M., R. G. Storey & D. D. Williams, 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiologia 444: 183–195.

    Article  CAS  Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Inc, New Jersey: 23–24.

    Google Scholar 

  • Gathmann, F. O. & D. D. Williams, 2006. Insect emergence in Canadian coldwater springs: spatial and temporal patterns, and species–environment relationships. International Journal of Limnology 42: 143–156.

    Article  Google Scholar 

  • Hengeveld, H. G., 2000. Projections for Canada’s Climate Future: A Discussion of Recent Simulations with the Canadian Global Climate Model. Climate Change Digest Special Edition (CCD 00–01). Meteorological Service of Canada, Environment Canada, Downsview, Ontario.

  • Hogg, I. D. & D. D. Williams, 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystem-level manipulation. Ecology 77: 395–407.

    Article  Google Scholar 

  • Hogg, I. D., D. D. Williams, J. M. Eadie & S. A. Butt, 1995. The consequences of global warming for stream invertebrates: a field simulation. Journal of Thermal Biology 20: 199–206.

    Article  Google Scholar 

  • Hubbs, C., 1995. Perspectives: springs and spring runs as unique aquatic systems. Copeia 4: 989–991.

    Article  Google Scholar 

  • Hughes, L., 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution 15: 56–61.

    Article  PubMed  Google Scholar 

  • IPCC, 2001. Climate change, 2001. Synthesis report. Summary of policymakers approved in detail at IPCC plenary XVIII Wembley, United Kingdom 24–29 September 2001. http://www.ipcc.ch/pub/un/syreng/spm.pdf.

  • Jiang, L. & A. Kulczycki, 2004. Competition, predation and species responses to environmental change. Oïkos 106: 217–224.

    Google Scholar 

  • Kennedy, A. D., 1994. Simulated climate change: a field manipulation study of polar microarthropod community response to global warming. Ecography 17: 131–140.

    Article  Google Scholar 

  • Klanderud, K. & O. Totland, 2005. Simulated climate change altered dominance hierarchies and diversity of an Alpine biodiversity hotspot. Ecology 86: 2047–2054.

    Article  Google Scholar 

  • Lamberti, G. A. & V. H. Resh, 1983. Geothermal effects on stream benthos: separate influences of thermal and chemical components on periphyton and macroinvertebrates. Canadian Journal of Fisheries and Aquatic Sciences 40: 1995–2009.

    Article  Google Scholar 

  • Magnusson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. G. Eaton, H. E. Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian shield region. Hydrological Processes 11: 825–871.

    Article  Google Scholar 

  • Mason, W. T., 1973. An Introduction to the Identification of Chironomid Larvae. U. S. Environmental Protection Agency, Ohio.

    Google Scholar 

  • McCarty, J. P., 2001. Ecological consequences of recent climate change. Conservation Biology 15: 320–331.

    Article  Google Scholar 

  • Nyman, M., A. Korhola & S. J. Brooks, 2005. The distribution and diversity of Chironomidae (Insecta: Diptera) in western Finnish Lapland, with special emphasis on shallow lakes. Global Ecology and Biogeography 14: 137–153.

    Article  Google Scholar 

  • Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for paleotemperature reconstructions. Journal of Paleolimnology 18: 45–59.

    Article  Google Scholar 

  • Orendt, C., 2000. The chironomid communities of woodland springs and spring brooks severely endangered and impacted ecosystems in a lowland region of Eastern Germany (Diptera: Chironomidae). Journal of Insect Conservation 4: 79–91.

    Article  Google Scholar 

  • Petchey, O. L., T. McPhearson, T. M. Casey & P. J. Morin, 1999. Environmental warming alters food-web structure and ecosystem function. Nature 402: 69–72.

    Article  CAS  Google Scholar 

  • Quinlan, R., M. S. V. Douglas & J. P. Smol, 2005. Food web changes in arctic ecosystems related to climate warming. Global Change Biology 11: 1381–1386.

    Article  Google Scholar 

  • Rossaro, B., 1991. Chironomids and water temperature. Aquatic Insects 2: 87–98.

    Article  Google Scholar 

  • Ruess, L., A. Michelsen & S. Jonasson, 1999. Simulated climate change in subarctic soils: responses in nematode species composition and dominance structure. Nematology 1: 513–526.

    Article  Google Scholar 

  • Schindler, D. W., 1997. Widespread effects of climatic warming on freshwater ecosystems in North America. Hydrological Processes 11: 1043–1067.

    Article  Google Scholar 

  • Schindler, D. W., 2001. The cumulative effects of climatic warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.

    Article  Google Scholar 

  • StatSoft, Inc., 2001. STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc., 2300 East 14th Street, Tulsa, OK 74104, WEB: http://www.statsoft.com.

  • Stauffer, D. & H. Arndt, 2005. Simulation and experiment of extinction or adaptation of biological species after temperature changes. International Journal of Modern Physics C 16: 389–392.

    Article  Google Scholar 

  • Storey, R. G. & D. D. Williams, 2004. Spatial responses of hyporheic invertebrates to seasonal changes in environmental parameters. Freshwater Biology 49: 1468–1486.

    Article  Google Scholar 

  • Strayer, D. L., S. E. May, P. Nielsen, W. Wollheim & S. Hausam, 1997. Oxygen, organic matter, and sediment granulometry as controls on hyporheic animal communities. Archiv für Hydrobiologie 140: 131–144.

    CAS  Google Scholar 

  • Sweeney, B. W., 1984. Factors influencing life history patterns of aquatic insects. In Resh, V. H. & D. M. Rosenberg (eds), The ecology of aquatic insects. Praeger, New York, New York, USA: 56–100.

    Google Scholar 

  • Sweeney, B. W. & R. L. Vannote, 1978. Size variation and the distribution of hemimetabolous aquatic insects: two thermal equilibrium hypotheses. Science 200: 444–446.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, B. W., J. K. Jackson, J. D. Newbold & D. H. Funk, 1992. Climate change and the life histories and biogeography of aquatic insects in Eastern North America. In Firth, P. & S. G. Fisher (eds), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, New York, New York, USA: 143–176.

    Google Scholar 

  • Triska, F. J., J. H. Duff & F. J. Avanzino, 1993. The role of water exchange between a stream channel and its hyporheic zone in nitrogen cycling at the terrestrial-aquatic interface. Hydrobiologia 251: 167–184.

    Article  CAS  Google Scholar 

  • Van der Kamp, G., 1995. The hydrogeology of springs in relation to the biodiversity of spring fauna: a review. Journal of the Kansas Entomological Society 68: 4–17.

    Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. The American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Vitousek, P. M., 1994. Beyond global warming: ecology and global change. Ecology 75: 1861–1876.

    Article  Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48: 975–987.

    Google Scholar 

  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Ward, J. V. & J. A. Stanford, 1982. Thermal responses in the evolutionary ecology of aquatic insects. Annual Review of Entomology 27: 97–117.

    Article  Google Scholar 

  • Wiederholm, T., 1983. Chironomidae of the Holarctic Region: Keys and Diagnoses, Part 1–larvae. Entomologica Scandinavica Suppl, Motala 457p.

  • Williams, D. D., 1991. The spring as an interface between groundwater and lotic faunas and as a tool in assessing groundwater quality. Verhein International Verein Limnolgie 24: 1621–1624.

    Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Article  Google Scholar 

  • Williams, D. D. & N. E. Williams, 1996. Springs and spring faunas in Canada. Crunoecia 5: 13–24.

    Google Scholar 

  • Williams, D. D. & N. E. Williams, 1998. Invertebrate communities from freshwater springs: What can they contribute to pure and applied ecology? In Botosaneanu, L. (ed.), Studies in Crenobiology. The biology of springs, springbrooks. Backhuys Publish, Leiden: 251–261.

    Google Scholar 

  • Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dudley Williams.

Additional information

Handling editor: S. Stendera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tixier, G., Wilson, K.P. & Williams, D.D. Exploration of the influence of global warming on the chironomid community in a manipulated shallow groundwater system. Hydrobiologia 624, 13–27 (2009). https://doi.org/10.1007/s10750-008-9663-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-008-9663-y

Keywords

Navigation