Skip to main content
Log in

The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Our goal was to quantify the coupled process of litter turnover and leaching as a source of nutrients and fixed carbon in oligotrophic, nutrient-limited wetlands. We conducted poisoned and non-poisoned incubations of leaf material from four different perennial wetland plants (Eleocharis spp., Cladium jamaicense, Rhizophora mangle and Spartina alterniflora) collected from different oligotrophic freshwater and estuarine wetland settings. Total phosphorus (TP) release from the P-limited Everglades plant species (Eleocharis spp., C. jamaicense and R. mangle) was much lower than TP release by the salt marsh plant S. alterniflora from N-limited North Inlet (SC). For most species and sampling times, total organic carbon (TOC) and TP leaching losses were much greater in poisoned than non-poisoned treatments, likely as a result of epiphytic microbial activity. Therefore, a substantial portion of the C and P leached from these wetland plant species was bio-available to microbial communities. Even the microbes associated with S. alterniflora from N-limited North Inlet showed indications of P-limitation early in the leaching process, as P was removed from the water column. Leaves of R. mangle released much more TOC per gram of litter than the other species, likely contributing to the greater waterborne [DOC] observed by others in the mangrove ecotone of Everglades National Park. Between the two freshwater Everglades plants, C. jamaicense leached nearly twice as much P than Eleocharis spp. In scaling this to the landscape level, our observed leaching losses combined with higher litter production of C. jamaicense compared to Eleocharis spp. resulted in a substantially greater P leaching from plant litter to the water column and epiphytic microbes. In conclusion, leaching of fresh plant litter can be an important autochthonous source of nutrients in freshwater and estuarine wetland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • R. Aerts (1996) ArticleTitleNutrient resorption from senescing leaves of perennials: are there general patterns? Journal of Ecology 84 597–608 Occurrence Handle10.2307/2261481

    Article  Google Scholar 

  • J. A. Amador R. D. Jones (1993) ArticleTitleNutrient limitations on microbial respiration in peat soils with different total phosphorus content Soil Biology and Biochemistry 25 IssueID6 793–801 Occurrence Handle1:CAS:528:DyaK3sXltFKnsLk%3D Occurrence Handle10.1016/0038-0717(93)90125-U

    Article  CAS  Google Scholar 

  • R. Benner E. R. Peele R. E. Hodson (1986) ArticleTitleMicrobial utilization of dissolved organic matter from leaves of the red mangrove, Rhizophora mangle, in the Fresh Creek Estuary, Bahamas Estuarine, Coastal and Shelf Science 23 607–619 Occurrence Handle1:CAS:528:DyaL2sXjvVSgsQ%3D%3D Occurrence Handle10.1016/0272-7714(86)90102-2

    Article  CAS  Google Scholar 

  • Childers, D. L., D. Iwaniec, D. Rondeau, G. Rubio, E. Verdon & C. Madden. Primary productivity in Everglades marshes demonstrates the sensitivity of oligotrophic ecosystems to environmental drivers. Aquatic Botany (in review).

  • R. J. Daoust D. L. Childers (2004) ArticleTitleEcological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem Oecologia 141 672–686 Occurrence Handle15365807 Occurrence Handle10.1007/s00442-004-1675-3

    Article  PubMed  Google Scholar 

  • Davis, S. M., 1989. Sawgrass and cattail production in relation to nutrient supply in the Everglades. In R. R. S. & J. W. Gibbons (eds), Freshwater Wetlands and Wildlife. US Department of Energy, Charleston, SC, 325–341.

  • S. M. Davis (1991) ArticleTitleGrowth, decomposition, and nutrient retention in Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades Aquatic Botany 40 203–224 Occurrence Handle10.1016/0304-3770(91)90059-E

    Article  Google Scholar 

  • S. E. Davis C. Coronado-Molina D. L. Childers J. W. Day SuffixJr. (2003) ArticleTitleTemporally dependent C, N, and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the southern Everglades Aquatic Botany 75 199–215 Occurrence Handle1:CAS:528:DC%2BD3sXhtVagsr4%3D Occurrence Handle10.1016/S0304-3770(02)00176-6

    Article  CAS  Google Scholar 

  • I. C. Feller D. Whigham J. O’Neill K. McKee (1999) ArticleTitleEffects of nutrient enrichment on within-stand cycling in a mangrove forest Ecology 80 IssueID7 2193–2205 Occurrence Handle10.2307/176903

    Article  Google Scholar 

  • J. G. Gosselink C. J. Kirby (1974) ArticleTitleDecomposition of salt marsh grass, Spartina alterniflora Loisel Limnology and Oceanography 19 IssueID5 825–832

    Google Scholar 

  • J. R. Gosz G. E. Likens F. H. Borman (1973) ArticleTitleNutrient release from decoposing leaf and branch litter in the Hubbard Brook Forest, New Hampshire Ecological Monographs 43 173–191 Occurrence Handle10.2307/1942193

    Article  Google Scholar 

  • A. Ibrahima R. Joffre D. Gillon (1995) ArticleTitleChanges in leaf litter during the initial leaching phase: an experiment on the leaf litter of Mediterranean species Soil Biology and Biochemistry 27 IssueID7 931–939 Occurrence Handle1:CAS:528:DyaK2MXlvFehtro%3D Occurrence Handle10.1016/0038-0717(95)00006-Z

    Article  CAS  Google Scholar 

  • R. Jaffé J. N. Boyer X. Lu N. Maie C. Yang N. M. Scully S. Mock (2004) ArticleTitleSource characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis Marine Chemistry 84 195–210 Occurrence Handle10.1016/j.marchem.2003.08.001 Occurrence Handle1:CAS:528:DC%2BD3sXpsFeku78%3D

    Article  CAS  Google Scholar 

  • K. T. Killingbeck (1996) ArticleTitleNutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency Ecology 77 IssueID6 1716–1727 Occurrence Handle10.2307/2265777

    Article  Google Scholar 

  • M. S. Koch S. C. Snedaker (1997) ArticleTitleFactors influencing Rhizophora mangle L. seedling development in Everglades carbonate soils Aquatic Botany 59 87–98 Occurrence Handle10.1016/S0304-3770(97)00027-2

    Article  Google Scholar 

  • X. Lu D. L. Childers J. V. Hanna N. Maie R. Jaffé (2003) ArticleTitleMolecular characterization of dissolved organic matter in freshwater wetlands of the Florida Everglades Water Research 37 2599–2606 Occurrence Handle12753837 Occurrence Handle1:CAS:528:DC%2BD3sXjsFOksL8%3D Occurrence Handle10.1016/S0043-1354(03)00081-2

    Article  PubMed  CAS  Google Scholar 

  • N. Maie C. Yang T. Miyoshi K. Parish R. Jaffe (2005) ArticleTitleChemical characteristics of dissolved organic matter in an oligotrophic subtropical wetland/estuarine ecosystem Limnology and Oceanography 50 23–35 Occurrence Handle1:CAS:528:DC%2BD2MXht1Gju78%3D Occurrence Handle10.4319/lo.2005.50.1.0023

    Article  CAS  Google Scholar 

  • M. A. Moran R. E. Hodson (1989) ArticleTitleBacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate Applied Environmental Microbiology 55 IssueID9 2178–2189 Occurrence Handle1:STN:280:DyaK3c%2FisFSrsQ%3D%3D

    CAS  Google Scholar 

  • J. T. Morris B. Haskin (1990) ArticleTitleA 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora Ecology 71 2209–2217 Occurrence Handle10.2307/1938633

    Article  Google Scholar 

  • Noe, G. B. & D. L. Childers. Phosphorus budgets in Everglades wetland ecosystems: the effects of nutrient enrichment. Ecosystems (in review).

  • G. B. Noe D. L. Childers R. D. Jones (2001) ArticleTitlePhosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4 603–624 Occurrence Handle1:CAS:528:DC%2BD38Xjsl2itQ%3D%3D Occurrence Handle10.1007/s10021-001-0032-1

    Article  CAS  Google Scholar 

  • R. G. Qualls C. J. Richardson (2000) ArticleTitleP enrichment affects litter decomposition, immobilization, and soil microbial P in wetland mesocosms Soil Science Society of America Journal 64 799–808 Occurrence Handle1:CAS:528:DC%2BD3cXms1Oqs7s%3D Occurrence Handle10.2136/sssaj2000.642799x

    Article  CAS  Google Scholar 

  • C. J. Richardson G. Ferrell P. Vaithiyanthan (1999) ArticleTitleNutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass Ecology 80 IssueID7 2182–2192 Occurrence Handle10.2307/176902

    Article  Google Scholar 

  • L. M. Romero T. J. Smith J. W. Fourqurean (2005) ArticleTitleChanges in mass and nutrient content of wood during decomposition in a south Florida mangrove forest Journal of Ecology 93 618–631 Occurrence Handle1:CAS:528:DC%2BD2MXlvFOksrY%3D Occurrence Handle10.1111/j.1365-2745.2005.00970.x

    Article  CAS  Google Scholar 

  • Rubio, G. A. & D. L. Childers. Decomposition of Cladium jamaicense, Eleocharis sp., and Juncus roemerianus in the estuarine ecotones of the Florida Everglades. Estuaries (in review).

  • L. Solorzano J. H. Sharp (1980) ArticleTitleDetermination of total dissolved phosphorus and particulate phosphorus in natural waters Limnology and Oceanography 25 IssueID4 754–758 Occurrence Handle1:CAS:528:DyaL3MXnsFSg Occurrence Handle10.4319/lo.1980.25.4.0754

    Article  CAS  Google Scholar 

  • P. V. Sundareshwar J. T. Morris E. K. Koepfler B. Fornwalt (2003) ArticleTitlePhosphorus limitation of coastal ecosystem processes Science 299 563–565 Occurrence Handle12543975 Occurrence Handle1:CAS:528:DC%2BD3sXlsVarsw%3D%3D Occurrence Handle10.1126/science.1079100

    Article  PubMed  CAS  Google Scholar 

  • M. J. Swift O. W. Heal J. M. Anderson (1979) Decomposition in Terrestrial Ecosystems Blackwell Scientific Oxford, UK

    Google Scholar 

  • B. R. Taylor F. Bärlocher (1996) ArticleTitleVariable effects of air-drying on leaching losses from tree leaf litter Hydrobiologia 325 173–182 Occurrence Handle1:CAS:528:DyaK28Xltl2jt7g%3D Occurrence Handle10.1007/BF00014982

    Article  CAS  Google Scholar 

  • J. M. Teal (1962) ArticleTitleEnergy flow in the salt marsh ecosystem of Georgia Ecology 43 614–624 Occurrence Handle10.2307/1933451

    Article  Google Scholar 

  • H. B. Tukey (1970) ArticleTitleThe leaching of substances from plants Annual Review of Plant Physiology 21 305–324 Occurrence Handle1:CAS:528:DyaE3cXkvVCmtbc%3D Occurrence Handle10.1146/annurev.pp.21.060170.001513

    Article  CAS  Google Scholar 

  • J. R. Webster E. F. Benfield (1986) ArticleTitleVascular plant breakdown in freshwater ecosystems Annual Review of Ecology and Systematics 17 567–594 Occurrence Handle10.1146/annurev.es.17.110186.003031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen E. Davis III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S.E., Childers, D.L. & Noe, G.B. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation. Hydrobiologia 569, 87–97 (2006). https://doi.org/10.1007/s10750-006-0124-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-006-0124-1

Keywords

Navigation