Skip to main content

Advertisement

Log in

The Signs of Maize? A Reconsideration of What δ13C Values Say about Palaeodiet in the Andean Region

  • Published:
Human Ecology Aims and scope Submit manuscript

Abstract

Palaeodietary isotope studies have long assumed C4 signals in South American archaeological populations to be due to the consumption of maize (Zea mays), which in turn, underlie interpretations important social processes. We presents δ13C data from wild plants (n = 89) from the south coast of Peru, which may have been significant in the diets of humans and animals in the past. A combination of these with previously published results from domesticates of the Andean region (n = 144) brings the proportion of C4 species likely to have contributed to the human dietary isotopic signal, whether directly or indirectly, to almost one third. This undermines the widespread assumption that maize is the only plant to contribute a C4 signal to diets. By considering both direct and indirect routes whereby C4 plants may have contributed to the human isotopic signal we show the need for a reassessment of how palaeodietary studies are interpreted in the Andes, and perhaps elsewhere in the Americas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The data from the intra-species results is normally distributed, using a Kolmogorov-Smirnov test Amaranthus caudatus D(11) = 0.10, p > 0.05 and for Atriplex rotundifolia D(7) = 0.16, p > 0.05, hence the use of parametric statistics here.

References

  • Altieri, M. A., Anderson, M. K., and Merrick, L. C. (1987). Peasant Agriculture and the Conservation Of Crop And Wild Plant Resources. Conservation Biology 1(1): 49–58.

    Article  Google Scholar 

  • Ambrose, S. H. (1993). Isotopic analysis of paleodiets: Methodological and interpretive considerations. In Sandford, M. K. (ed.), Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology. Gordon and Breach, Philadelphia, pp. 59–130.

    Google Scholar 

  • Ambrose, S. H., and Norr, L. (1993). Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Lambert and, J. B., and Grupe, G. (eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer, Berlin, pp. 1–37.

    Google Scholar 

  • Apg, A. P. G. (1998). An Ordinal Classifaction for the Families of Flowering Plants. Annals of the Missouri Botanical Garden 85: 531–553.

    Article  Google Scholar 

  • Baaijens, G. J., and Veldkamp, J. F. (1991). Sporobolus (Gramineae) in Malesia. Blumea 35(2): 393–458.

    Google Scholar 

  • Batanouny, K. H., Stichler, W., and Ziegler, H. (1988). Photosynthetic Pathways, Distribution, and Ecological Characteristics of Grass Species in Egypt. Oecologia 75(4): 539–548.

    Article  Google Scholar 

  • Beresford-Jones, D. G. (2005). Pre-Hispanic Prosopis-Human Relationships on the South Coast of Peru: Riparian Forests in the Context of Environmental and Cultural Trajectories of the Lower Ica Valley. Ph.D. thesis, Department of Archaeology, University of Cambridge.

  • Beresford-Jones, D. G. (2011). The Lost Woodlands of Ancient Nasca. A Case-Study in Ecological and Cultural Collapse. Oxford University Press, Oxford.

    Google Scholar 

  • Beresford-Jones, D. G., Arce Torres, S., Whaley, O. Q., and Chepstow-Lusty, A. J. (2009). The Role of Prosopis in Ecological and Landscape Change in the Samaca Basin, Lower Ica Valley, South Coast Peru from the Early Horizon to the Late Intermediate Period. Latin American Antiquity 20(2): 303–332.

    Google Scholar 

  • Beresford-Jones, D. G., Whaley, O. Q., Alarcón, C., and Cadwallader, L. (2011). Two Millennia of Changes in Human Ecology: Archaeobotanical and Invertebrate records from the Lower Ica Valley, South Coast Peru. Vegetation History and Archaeobotany 20(4): 273–292.

    Google Scholar 

  • Beuning, K. R. M., and Scott, J. E. (2002). Effects of Charring on the Carbon Isotopic Composition of Grass (Poaceae) Epidermis. Palaeogeography, Palaeoclimatology, Palaeoecology 177(1–2): 169–181.

    Article  Google Scholar 

  • Brack Egg, A. (1999). Diccionario Enciclopédico de Plantas Útiles del Perú. CBC, Cusco.

    Google Scholar 

  • Bridson, D., and Forman, L. (eds.) (2010). The Herbarium Handbook. Kew Publishing, Royal Botanic Gardens, Kew, London.

    Google Scholar 

  • Bruno, M. C. (2006). A morphological approach to documenting the domestication of Chenopodium in the Andes. In Zeder, M. A., Bradley, D. G., Emshwiller, E., and Smith, B. D. (eds.), Documenting Domestication: New Genetic and Archaeological Paradigms.. University of California Press, Berkeley, California, pp. 32–45.

    Google Scholar 

  • Burger, R. L. (2012). Central Andean language expansion and the Chavín sphere of interaction. In Heggarty, P., and Beresford-Jones, D. G. (eds.), Archaeology and Language in the Andes. British Academy/Oxford University Press, London, pp. 133–159.

    Google Scholar 

  • Burger, R. L., and van der Merwe, N. J. (1990). Maize and the Origin of Highland Chavín Civilization: An Isotopic Perspective. American Anthropologist 92(1): 85–95.

    Article  Google Scholar 

  • Cajal, J. L. (1989). Uso de Hábitat por Vicuñas y Guanacos en la Reserve San Guillermo, Argentina. Vida Silvestre Neotropical 2: 21–31.

    Google Scholar 

  • Castetter, E. F., and Underhill, R. M. (1935). The Ethnobiology of the Papago. Ethnobiology Studies in the American Southwest 2, Biological Series Volume 4 (3). Universtiy of New Mexico Bulletin, Albuquerque.

    Google Scholar 

  • Cavagnaro, J. B. (1988). Distribution on C3 and C4 Grasses at Different Altitudes in a Temperate Arid Region of Argentina. Oecologia 76(2): 273–277.

    Article  Google Scholar 

  • Cieza de León, P. d. ([1553] 1955). La Crónica del Peru. Lima, Perú: Fondo Editorial de la Pontificia Universidad Católica del Perú (PUCP).

  • Collins, R. P., and Jones, M. B. (1986). The Influence of Climatic Factors on the Distribution of C4 Species in Europe. Vegetatio 64(2/3): 121–129.

    Article  Google Scholar 

  • Cook, A. G., and Parrish, N. (2005). Gardens in the Desert: Archaeobotanical Analysis from the Lower Ica Valley, Peru. Andean Past 7: 135–156.

    Google Scholar 

  • D’Altroy, T. N. (2001). Politics, resources and blood in the Inka empire. In Alcock, S. E., D’Altroy, T. N., Morrison, K. D., and Sinopoli, C. M. (eds.), Empires: Perspectives from Archaeology and History. Cambridge University Press, Cambridge, pp. 201–226.

    Google Scholar 

  • D’Altroy, T. N., and Schreiber, K. (2004). Andean empires. In Silverman, H. I. (ed.), Andean Archaeology, vol. 2. Blackwell Publishing, Oxford, pp. 255–279.

    Google Scholar 

  • DeNiro, M. J. (1988). Marine food sources for prehistoric coastal Peruvian camelids: Isotopic evidence and implications. In Wing, E. S., and Wheeler, J. C. (eds.), Economic Prehistory of the Central Andes, vol. British Archaeological Reports International Series 427. British Archaeological Reports, Oxford, pp. 119–129.

    Google Scholar 

  • DeNiro, M. J., and Epstein, S. (1978). Influence of Diet on the Distribution of Carbon Isotopes in Animals. Geochimica et Cosmochimica Acta 42(5): 495–506.

    Article  Google Scholar 

  • DeNiro, M. J., and Hastorf, C. A. (1985). Alteration of 15N/14N and 13C/12C Ratios of Plant Matter During the Initial Stages of Diagenesis: Studies Utilizing Archaeological Specimens from Peru. Geochimica et Cosmochimica Acta 49(1): 97–115.

    Article  Google Scholar 

  • Doliner, L. H., and Jolliffe, P. A. (1979). Ecological Evidence Concerning the Adaptive Significance of the C4 Dicarboxylic Acid Pathway of Photosynthesis. Oecologia 38(1): 23–34.

    Article  Google Scholar 

  • Ehleringer, J. R., and Björkman, O. (1977). Quantum Yields for CO2 Uptake in C3 and C4 Plants. Plant Physiology 59: 86–90.

    Article  Google Scholar 

  • Eickmeier, W. G., and Bender, M. M. (1976). Carbon Isotope ratios of Crassulacean Acid Metabolism Species in Relation to Climate and Phytosociology. Oecologia 25(4): 341–347.

    Article  Google Scholar 

  • El Shaer, H. M. (2006). Halophytes as cash crops for animal feeds in arid and semi-arid regions. In Münir, Ö., Waisel, Y., Khan, M. A., and Görk, G. (eds.), Biosaline Agriculture and Salinity Tolerance in Plants. Birkhäuser Verlag, Basel, pp. 117–128.

    Chapter  Google Scholar 

  • Emmons, L. H. (1990). Neotropical Rainforest Mammals - A Field Guide. The University of Chicago Press, Chicago.

    Google Scholar 

  • Finucane, B. C. (2007). Mummies, Maize, and Manure: Multi-Tissue Stable Isotope Analysis of Late Prehistoric Human Remains from the Ayacucho Valley, Peru. Journal of Archaeological Science 34(12): 2115–2124.

    Article  Google Scholar 

  • Finucane, B. C. (2009). Maize and Sociopolitical Complexity in the Ayacucho Valley, Peru. Current Anthropology 50(4): 535–545.

    Article  Google Scholar 

  • Finucane, B. C., Agurto, P. M., and Isbell, W. H. (2006). Human and Animal Diet at Conchopata, Peru: Stable Isotope Evidence for Maize Agriculture and Animal Management Practices During the Middle Horizon. Journal of Archaeological Science 33(12): 1766–1776.

    Article  Google Scholar 

  • Flores Ochoa, J., and Macquarrie, K. (1994). Moder-day herders: An Andean legacy continues. In Blassi, J. (ed.), Gold of the Andes: The Llamas, Alpacas, Vicuñas and Guanacos of South America. Patthey & Sons, Madrid, pp. 100–193.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (1992). Maize in Human Nutrition - Chemical Composition and Nutritional Value of Maize. http://www.fao.org/docrep/T0395E/T0395E03.htm#Gross%20chemical%20composition, accessed November 15, 2011.

  • Froehle, A. W., Kellner, C. M., and Schoeninger, M. J. (2010). Effect of Diet and Protein Source on Carbon Stable Isotope Ratios in Collagen: Follow Up to Warinner and Tuross 2009. Journal of Archaeological Science 37: 2662–2670.

    Article  Google Scholar 

  • Gil, A. F., Neme, G. A., Tykot, R. H., Novellino, P., Cortegoso, V., and Durán, V. (2009). Stable Isotopes and Maize Consumption in Central Western Argentina. International Journal of Osteoarchaeology 19(2): 215–236.

    Article  Google Scholar 

  • Gil, A. F., Neme, G. A., and Tykot, R. H. (2011). Stable Isotopes and Human Diet in Central Western Argentina. Journal of Archaeological Science 38(7): 1395–1404.

    Article  Google Scholar 

  • Godelier, M. (1977). Perspectives in Marxist Anthropology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Goldstein, P. S. (2003). From stew-eaters to maize-drinkers: The chicha economy and the Tiwanaku expansion. In Bray, T. L. (ed.), The Archaeology and Politics of Food and Feasting in Early States and Empires. Kluwer Academic/Plenum Publishers, New York, pp. 143–172.

    Chapter  Google Scholar 

  • Golte, J. (2009). Moche Cosmología y Sociedad: Una Interpretación Iconográfica. IEP, Instituto de Estudios Peruanos; CBC, Centro Bartolomé de las Casas, Lima.

    Google Scholar 

  • Gross, R., Koch, F., Malaga, I., de Miranda, A. F., Schoeneberger, H., and Trugo, L. C. (1989). Chemical Composition and Protein Quality of Some Local Andean Food Sources. Food Chemistry 34(1): 25–34.

    Article  Google Scholar 

  • Hastorf, C. A. (1991). Gender, space, and food in prehistory. In Gero, J. M., and Conkey, M. W. (eds.), Engendering Archaeology. Basil Blackwell Ltd., Oxford, pp. 132–162.

    Google Scholar 

  • Hastorf, C. A., and Johannessen, S. (1993). Pre-Hispanic Political Change and the Role of Maize in the Central Andes of Peru. American Anthropologist 95(1): 115–138.

    Article  Google Scholar 

  • Hatch, M. D., and Slack, C. R. (1966). Photosynthesis by Sugar-Cane Leaves: A New Caboxylation Reaction and the Pathway of Sugar Formation. Biochemical Journal 101(1): 103–111.

    Google Scholar 

  • Hesla, B. I., Tieszen, L. L., and Imbamba, S. K. (1982). A Systematic Survey of C3 and C4 Photosynthesis in the Cyperaceae of Kenya, East Africa. Photosynthetica 16: 196–205.

    Google Scholar 

  • Hodgson, W. C. (2001). Food Plants of the Sonoran Desert. University of Arizona Press, Tuscon, Arizona.

    Google Scholar 

  • Hoefs, J. (1997). Stable Isotope Geochemistry. Springer, Berlin.

    Google Scholar 

  • Holden, T. G. (1991). Evidence of Prehistoric Diet from Northern Chile: Coprolites, Gut Contents and Flotation Samples from the Tulan Quebrada. World Archaeology 22(3): 320–331.

    Article  Google Scholar 

  • Horn, P., Hölzl, S., Rummel, S., Åberg, G., Schiegl, S., Biermann, D., Struck, U., and Rossmann, A. (2009). Humans and camelids in river oases of the Ica-Palpa-Nazca region in pre-Hispanic times - Insights from H-C-N-O-S-Sr isotope signatures. In Reindel, M. and Wagner, G. A. (eds.), New Technologies for Archaeology: Multidisciplinary Investigations in Palpa and Nasca, Peru. Natural Science in Archaeology. Springer, Berlin, pp. 173–192.

  • Isbell, W. H. (1988). City and state in Middle Horizon Huari. In Keatinge, R. W. (ed.), Peruvian Prehistory. Cambridge University Press, Cambridge, pp. 164–189.

    Google Scholar 

  • Jim, S., Ambrose, S. H., and Evershed, R. P. (2004). Stable Carbon Isotopic Evidence for Differences in the Dietary Origin of Bone Cholesterol, Collagen and Apaptite: Implications for their use in Palaeodietary Reconstruction. Geochimica et Cosmochimica Acta 68: 61–72.

    Article  Google Scholar 

  • Judd, W. S., Campbell, C. S., Kellogg, E. A., and Stevens, P. F. (1999). Plant Systematics: A Phylogenetic Approach. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Kadereit, G., Borsch, T., Weising, K., and Freitag, H. (2003). Phylogeny of Amaranthaceae and Chenopodiaceae and the Evolution of C4 Photosynthesis. International Journal of Plant Sciences 164(6): 959–986.

    Article  Google Scholar 

  • Kellner, C. M., and Schoeninger, M. J. (2008). Wari’s Imperial Influence on Local Nasca Diet: The Stable Isotope Evidence. Journal of Anthropological Archaeology 27: 226–243.

    Article  Google Scholar 

  • Knight Piésold Consultores, S. A. (2003). Evaluación preliminar del uso de hábitat del Guanaco (Lama guanicoe) en la zona comprendida entre la Pampa Yarabamba y la cabecera de la Quebrada Linga. Estudio de Impacto Ambiental Proyecto Sulfuros Primarios. Sociedad Minera Cerro Verde S.A.A, Arequipa, Peru.

    Google Scholar 

  • Körner, C., Farquhar, G. D., and Roksandic, Z. (1988). A Global Survey of Carbon Isotope Discrimination in Plants from High Altitude. Oecologia 74(4): 623–632.

    Article  Google Scholar 

  • Lee-Thorp, J. A. (2008). On Isotopes and Old Bones. Archaeometry 50: 925–950.

    Article  Google Scholar 

  • Little, E. A., and Schoeninger, M. J. (1995). The Late Woodland diet on Nantucket Island and the Problem of Maize in Coastal New England. American Antiquity 60(2): 351–368.

    Article  Google Scholar 

  • Llano, C. (2009). Photosynthetic Pathways, Spatial Distribution, Isotopic Ecology, and Implications for Pre-Hispanic Human Diets in Central-Western Argentina. International Journal of Osteoarchaeology 19(2): 130–143.

    Article  Google Scholar 

  • Lozada, M. C., Buikstra, J. E., Rakita, G., and Wheeler, J. C. (2009). Camelid herders: The forgotten specialists in the coastal señorío of Chiribaya, southern Peru. In Marcus, J., and Williams, P. R. (eds.), Andean Civilization: A Tribute to Michael E. Moseley. Cotsen Institute of Archaeology, University of California, Los Angeles, pp. 351–364.

    Google Scholar 

  • Marino, B. D., and McElroy, M. B. (1991). Isotopic Composition of Atmospheric CO2 Inferred from Carbon in C4 Plant Cellulose. Nature 349(6305): 127–131.

    Article  Google Scholar 

  • Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E. S., and Doebley, J. F. (2002). A Single Domestication for Maize Shown by Multilocus Microsatellite Genotyping. Proceedings of the National Academy of Sciences of the United States of America 99: 6080–6084.

    Article  Google Scholar 

  • McCorkle, C. M. (1987). Punas, pastures and fields: Grazing strategies and the agropastoral dialectic in an indigenous Andean community. In Browman, D. L. (ed.), Arid Land Use Strategies and Risk Management in the Andes: A Regional Anthropological Perspective. Westview Press, Boulder, pp. 57–80.

    Google Scholar 

  • Minnis, P. E. (1989). Prehistoric Diet in the Northern Southwest: Macroplant Remains from Four Corners Feces. American Antiquity 54(3): 543–563.

    Article  Google Scholar 

  • Moseley, M. E. (1975). The Maritime Foundations of Andean Civilization. Cummings, Merlo Perk.

    Google Scholar 

  • Mulroy, T. W., and Rundel, P. W. (1977). Annual Plants: Adaptations to Desert Environments. BioScience 27(2): 109–114.

    Article  Google Scholar 

  • Murra, J. V. (1985). ‘El archipelago vertical’ revisited. In Masuda, S., Shimada, I., and Morris, C. (eds.), Andean Ecology and Civilization. University of Tokyo, Tokyo.

    Google Scholar 

  • Nabhan, G. P. (1985). Gathering the Desert. University of Arizona, Tuscon, Arizona.

    Google Scholar 

  • National Research Council, U. S. (1989). Lost Crops of the Incas: Little-Known Plants of the Andes with Promise for Worldwide Cultivation. Books for Business, New York.

    Google Scholar 

  • O’Leary, M. H. (1988). Carbon Isotopes in Photosynthesis. BioScience 38(5): 328–336.

    Article  Google Scholar 

  • Panarello, H. O., and Fernández, J. (2002). Stable Carbon Isotope Measurements on Hair from Wild Animals from Altiplanic Environments of Jujuy. Radiocarbon 44: 709–716.

    Google Scholar 

  • Piacenza, L. (2005). Evidencias Botánicas en Asentamientos Nasca. Boletín Museo de Arqueología y Antropología 5(1): 3–13.

    Google Scholar 

  • Quilter, J., and Stocker, T. (1983). Subsistence Economies and the Origins of Andean Complex Societies. American Anthropologist 85(3): 545–562.

    Article  Google Scholar 

  • Raghavendra, A. S., and Das, V. S. R. (1978). The occurrence of C4-Photosynthesis: A Supplementary List of C4 Plants Reported During late 1974 - mid 1977. Photosynthetica 12: 200–208.

    Google Scholar 

  • Reitz, E. J. (1988). Faunal Remains from Paloma, an Archaic Site in Peru. American Anthropologist 90(2): 310–322.

    Article  Google Scholar 

  • Roque, J., Cano, A., and Cook, A. (2003). Restos Vegetales Del Sitio Arqueológico Casa Vieja, Callango (Ica). Revista Peruana de Biología 10(1): 33–43.

    Google Scholar 

  • Rostworowski de Diez Canesco, M. (1981). Recursos Naturales Renovables y Pesca, Siglos XVI y XVII. Instituto de Estudios Peruanos, Lima, Perú.

    Google Scholar 

  • Sage, R. F., Sage, T. L., Pearcy, R. W., and Borsch, T. (2007). The Taxonomic Distribution of C4 Photosynthesis in Amaranthaceae Sensu Stricto. American Journal of Botany 94(12): 1992–2003.

    Article  Google Scholar 

  • Salomon, F. (1985). The dynamic potential of the complementarity concept. In Masuda, S., Shimada, I., and Morris, C. (eds.), Andean Ecology and Civilization: An Interdisciplinary Perspective on Andean Ecological Complementarity. University of Tokyo Press, Tokyo, pp. 511–531.

    Google Scholar 

  • Schoeninger, M. J., and DeNiro, M. J. (1984). Nitrogen and Carbon Isotopic Composition of Bone Collagen from Marine and Terrestrial Animals. Geochimica et Cosmochimica Acta 48(4): 625–639.

    Article  Google Scholar 

  • Schulz, N., Aceituno, P., and Richter, M. (2011). Phytogeographic Divisions, Climate Change and Plant Dieback Along the Coastal Desert of Northern Chile. Erdkunde 65(2): 169–187.

    Article  Google Scholar 

  • Schulze, E.-D., Ellis, R., Schulze, W., Trimborn, P., and Ziegler, H. (1996). Diversity, Metabolic Types and δ13C Carbon Isotope ratios in the Grass Flora of Namibia in Relation to Growth Form, Precipitation and Habitat Conditions. Oecologia 106(3): 352–369.

    Article  Google Scholar 

  • Sharp, Z. (2007). Principles of Stable Isotope Geochemistry. Pearson Education, Inc., Upper Saddle River.

    Google Scholar 

  • Shimada, M., and Shimada, I. (1985). Prehistoric Llama Breeding and Herding on the North Coast of Peru. American Antiquity 50(1): 3–26.

    Article  Google Scholar 

  • Silverman, H. (1993). Cahuachi in the Ancient Nasca World. University of Iowa Press, Iowa City.

    Google Scholar 

  • Slovak, N. M., and Paytan, A. (2011). Fisherfolk and Farmers: Carbon and Nitrogen Isotope Evidence from Middle Horizon Ancón, Peru. International Journal of Osteoarchaeology 21: 253–267.

    Article  Google Scholar 

  • Slovak, N. M., Paytan, A., and Wiegand, B. A. (2009). Reconstructing Middle Horizon Mobility Patterns on the Coast of Peru Through Strontium Isotope Analysis. Journal of Archaeological Science 36: 157–165.

    Article  Google Scholar 

  • Smith, B. N., and Brown, W. V. (1973). The Kranz Syndrome in the Gramineae as Indicated by Carbon Isotopic Ratios. American Journal of Botany 60(6): 505–513.

    Article  Google Scholar 

  • Sparks, J. P., and Ehleringer, J. R. (1997). Leaf Carbon Isotope Discrimination and Nitrogen Content for Riparian Trees Along Elevational Transects. Oecologia 109(3): 362–367.

    Article  Google Scholar 

  • Squeo, F. A., Arancio, G., Cortés, A., Hiriart, D., and López, D. (2006). Estudio de Línea de Base de Recursos Bióticos Terrestres del AMCP Isal Grande de Atacama (Punta Morro - Desembocadura del Río Copiapó). Informe final. Centro de Estudios Avanzado en Zonas Áridas, La Serena, Chile.

    Google Scholar 

  • Stahl, P. W. (2008). Animal domestication in South America. In Silverman, H., and Isbell, W. H. (eds.), Handbook of South American Archaeology. Springer, New York.

    Google Scholar 

  • Thornton, E. K., Defrance, S. D., Krigbaum, J., and Williams, P. R. (2011). Isotopic Evidence for Middle Horizon to 16th Century Camelid Herding in the Osmore Valley, Peru. International Journal of Osteoarchaeology 211(5): 544–567.

    Article  Google Scholar 

  • Tieszen, L. L., and Boutton, T. W. (1989). Stable carbon isotopes in terrestrial ecosystem research. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A. (eds.), Stable Isotopes in Ecological Research. Springer, New York, pp. 167–195.

    Chapter  Google Scholar 

  • Tieszen, L. L., and Chapman, M. (1992). Carbon and nitrogen isotopic status of the major marine and terrestrial resources in the Atacama Desert of Northern Chile. In Proceedings of the First World Congress on Mummy Studies. Museo Arqueológico y Etnográfico de Tenerife, Tenerife, pp. 409–426.

  • Tieszen, L. L., and Fagre, T. (1993a). Carbon Isotopic Variability in Modern and Archaeological Maize. Journal of Archaeological Science 20(1): 25–40.

    Article  Google Scholar 

  • Tieszen, L. L., and Fagre, T. (1993b). Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In Lambert, J. B., and Grupe, G. (eds.), Prehistoric Human Bone: Archaeology at the Molecular Level. Springer, Berlin, pp. 121–155.

    Google Scholar 

  • Tomczak, P. D. (2003). Prehistoric Diet and Socioeconomic Relationships Within the Osmore Valley of Southern Peru. Journal of Anthropological Archaeology 22(3): 262–278.

    Article  Google Scholar 

  • Towle, M. A. (1961). The Ethnobotany of Pre-Columbian Peru, vol. 30. Aldine, Chicago.

    Google Scholar 

  • Turner, B. L., Kingston, J. D., and Armelagos, G. J. (2010). Variation in Dietary Histories Among the Immigrants of Machu Picchu: Carbon and Nitrogen Isotope Evidence. Chungará (Arica) 42: 515–534.

    Article  Google Scholar 

  • United States Department of Agriculture 2011 National Nutrient Database for Standard Reference. http://www.nal.usda.gov/fnic/foodcomp/search/index.html, acessed November 15, 2011.

  • USDA, ARS, National Genetic Resources Program 2012 Germoplasm Resources Information Network - (GRIN) [Online Database]. http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl, accessed November 15, 2011.

  • Valdez, L. M. (2006). Maize Beer Production in Middle Horizon Peru. Journal of Anthropological Research 62(1): 53–80.

    Google Scholar 

  • van de Water, P. K., Leavitt, S. W., and Betancourt, J. L. (2002). Leaf δ13C Variability with Elevation, Slope Aspect, and Precipitation in the Southwest United States. Oecologia 132(3): 332–343.

    Article  Google Scholar 

  • Verano, J. W., and DeNiro, M. J. (1993). Locals or foreigners? Morphological, biometric, and isotopic approaches to the question of group affinity in human skeletal remains recovered from unusual archaeological contexts. In Sandford, M. K. (ed.), Food and Nutrition in History and Anthropology, vol. 10. Gordon and Breach, Reading, pp. 361–386.

    Google Scholar 

  • Vitousek, P. M., Matson, P. A., and Turner, D. R. (1988). Elevational and Age Gradients in Hawaiian Montane Rainforest: Foliar and Soil Nutrients. Oecologia 77(4): 565–570.

    Article  Google Scholar 

  • Vitousek, P. M., Field, C. B., and Matson, P. A. (1990). Variation in Foliar δ13C in Hawaiian Metrosideros polymorpha: A Case of Internal Resistance? Oecologia 84(3): 362–370.

    Google Scholar 

  • Wang, R. Z. (2004). Plant Functional Types and Their Ecological Responses to Salinization in Saline Grasslands, Northeastern China. Photosynthetica 42(4): 511–519.

    Article  Google Scholar 

  • Wang, G. A., Han, J. M., Faiia, A., Tan, W. B., Shi, W. Q., and Liu, X. Z. (2008). Experimental Measurements of Leaf Carbon Isotope Discrimination and Gas Exchange in the Progenies of Plantago depressa and Setaria viridis Collected from a Wide Altitudinal Range. Physiologia Plantarum 134(1): 64–73.

    Article  Google Scholar 

  • Watson, L., and Dallwitz, M. J. (1994). The Grass Genera of the World. C.A.B. International, Cambridge.

    Google Scholar 

  • Weir, G. H., and Dering, J. P. (1986). The lomas of Paloma: Human-environment relations in a central Peruvian fog oasis: Archaeobotany and palynology. In Matos, R., Turpin, S. A., and Eling, H. H. (eds.), Andean Archaeology, Papers in Memory of Clifford Evans, vol. Monograph XXVII. Institute of Archaeology, University of California, Los Angeles, pp. 18–44.

    Google Scholar 

  • Whaley, O. Q., Beresford-Jones, D. G., Milliken, W., Orellana, A., Smyk, A., and Leguía, J. (2010a). An Ecosystem Approach to Restoration and Sustainable Management of Dry Forest in Southern Peru. Kew Bulletin 65(4): 613–641.

    Article  Google Scholar 

  • Whaley, O. Q., Orellana, A., Pérez, E., Tenorio, M., Quinteros, F., Mendoza, M., and Pecho, O. (2010b). Plantas y Vegetación de Ica, Perú - Un recurso para su restauración y conservación. Royal Botanic Gardens, Kew.

    Google Scholar 

  • Wheeler, J. C. (1995). Evolution and Present Situation of the South American Camelidae. Biological Journal of the Linnean Society 54(3): 271–295.

    Article  Google Scholar 

  • Wheeler, J. C., Russel, A. J. F., and Stanley, H. F. (1992). A Measure of Loss: Prehispanic Llama and Alpaca Breeds. Archivos de Zootecnia 41: 467–475.

    Google Scholar 

  • White, C. D., Nelson, A. J., Longstaffe, F. J., Grupe, G., and Jung, A. (2009). Landscape Bioarchaeology at Pacatnamu, Peru: Inferring Mobility from δ13C and δ15N Values of Hair. Journal of Archaeological Science 36(7): 1527–1537.

    Article  Google Scholar 

  • Wilson, A. S., Taylor, T., Ceruti, M. C., Chavez, J. A., Reinhard, J., Grimes, V., Meier-Augenstein, W., Cartmell, L., Stern, B., Richards, M. P., Worobey, M., Barnes, I., and Gilbert, M. T. P. (2007). Stable Isotope and DNA Evidence for Ritual Sequences in Inca Child Sacrifice. Proceedings of the National Academy of Sciences of the United States of America 104(42): 16456–16461.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Catherine Kneale, Mike Hall and James Rolfe for help with isotope analysis; the Dorothy Garrod Laboratory for Isotopic Analysis (University of Cambridge) for facilitating this research, Alberto Benavides G. and Jane Wheeler for personal communications; and Octavio Pecho and Alfonso Orellana for many of the plant collections made for the Kew Darwin Project and used in our study here. LC would like to thank the AHRC, the Anthony Wilkins Fund and the Santander Universities Grant for Travel to Latin America for enabling this research as well as Alexander Pullen for all his support in the field. TCO would like to thank the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren Cadwallader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadwallader, L., Beresford-Jones, D.G., Whaley, O.Q. et al. The Signs of Maize? A Reconsideration of What δ13C Values Say about Palaeodiet in the Andean Region. Hum Ecol 40, 487–509 (2012). https://doi.org/10.1007/s10745-012-9509-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10745-012-9509-0

Keywords

Navigation