Skip to main content

Advertisement

Log in

New strategies for improving stem cell therapy in ischemic heart disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Finegold JA, Asaria P, Francis DP (2013) Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol 168:934–945

    Article  PubMed  PubMed Central  Google Scholar 

  2. http://www.who.int/mediacentre/factsheets/fs310. Accessed 19 Oct 2015

  3. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  CAS  PubMed  Google Scholar 

  5. Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, Dawn B (2015) Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res 117:558–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Michler RE (2014) Stem cell therapy for heart failure. Cardiol Rev 22:105–116

    Article  PubMed  Google Scholar 

  7. Passier R, van Laake LW, Mummery CL (2008) Stem-cell-based therapy and lessons from the heart. Nature 453:322–329

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Q, Yang Y, Wang H, Dong Q, Wang T, Qian H, Xu H (2012) Autophagy activation: a novel mechanism of atorvastatin to protect mesenchymal stem cells from hypoxia and serum deprivation via AMP-activated protein kinase/mammalian target of rapamycin pathway. Stem Cells Dev 21:1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Choi SH, Jung SY, Kwon S, Baek SH (2012) Perspectives on stem cell therapy for cardiac regeneration. Circ J 76:1307–1312

    Article  PubMed  Google Scholar 

  12. Menasche P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L, Vilquin JT, Marolleau JP, Seymour B, Larghero J, Lake S, Chatellier G, Solomon S, Desnos M, Hagege AA (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    Article  PubMed  Google Scholar 

  13. Menasche P, Hagege AA, Vilquin JT, Desnos M, Abergel E, Pouzet B, Bel A, Sarateanu S, Scorsin M, Schwartz K, Bruneval P, Benbunan M, Marolleau JP, Duboc D (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    Article  PubMed  Google Scholar 

  14. Fisher SA, Doree C, Mathur A, Martin-Rendon E (2015) Meta-analysis of cell therapy trials for patients with heart failure. Circ Res 116:1361–1377

    Article  CAS  PubMed  Google Scholar 

  15. Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, Ghersin E, Soto V, Lopera G, Miki R, Willens H, Hendel R, Mitrani R, Pattany P, Feigenbaum G, Oskouei B, Byrnes J, Lowery MH, Sierra J, Pujol MV, Delgado C, Gonzalez PJ, Rodriguez JE, Bagno LL, Rouy D, Altman P, Foo CW, Da SJ, Anderson E, Schwarz R, Mendizabal A, Hare JM (2014) Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 311:62–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Behfar A, Yamada S, Crespo-Diaz R, Nesbitt JJ, Rowe LA, Perez-Terzic C, Gaussin V, Homsy C, Bartunek J, Terzic A (2010) Guided cardiopoiesis enhances therapeutic benefit of bone marrow human mesenchymal stem cells in chronic myocardial infarction. J Am Coll Cardiol 56:721–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El NB, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61:2329–2338

    Article  PubMed  Google Scholar 

  18. Ye J, Yeghiazarians Y (2015) Cardiac stem cell therapy: Have we put too much hype in which cell type to use? Heart Fail Rev 20:613–619

    Article  CAS  PubMed  Google Scholar 

  19. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  20. Burridge PW, Keller G, Gold JD, Wu JC (2012) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 10:16–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ahmed RP, Haider HK, Buccini S, Li L, Jiang S, Ashraf M (2011) Reprogramming of skeletal myoblasts for induction of pluripotency for tumor-free cardiomyogenesis in the infarcted heart. Circ Res 109:60–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mauritz C, Martens A, Rojas SV, Schnick T, Rathert C, Schecker N, Menke S, Glage S, Zweigerdt R, Haverich A, Martin U, Kutschka I (2011) Induced pluripotent stem cell (iPSC)-derived Flk-1 progenitor cells engraft, differentiate, and improve heart function in a mouse model of acute myocardial infarction. Eur Heart J 32:2634–2641

    Article  CAS  PubMed  Google Scholar 

  23. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:S29–S37

    Article  CAS  PubMed  Google Scholar 

  24. Xiong Q, Ye L, Zhang P, Lepley M, Tian J, Li J, Zhang L, Swingen C, Vaughan JT, Kaufman DS, Zhang J (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127:997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ye L, Chang Y, Xiong Q, Zhang P, Zhang L, Somasundaram P, Lepley M, Swingen C, Su L, Wendel JS, Guo J, Jang A, Rosenbush D, Greder L, Dutton JR, Zhang J, Kamp TJ, Kaufman DS, Ge Y, Zhang J (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15:750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Wang D, Chen M, Yang B, Zhang F, Cao K (2011) Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart. PLoS One 6:e19012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ahmed RP, Ashraf M, Buccini S, Shujia J, Haider H (2011) Cardiac tumorigenic potential of induced pluripotent stem cells in an immunocompetent host with myocardial infarction. Regen Med 6:171–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang L, Pan Y, Qin G, Chen L, Chatterjee TK, Weintraub NL, Tang Y (2014) Inhibition of stearoyl-coA desaturase selectively eliminates tumorigenic Nanog-positive cells: improving the safety of iPS cell transplantation to myocardium. Cell Cycle 13:762–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wyles SP, Yamada S, Oommen S, Maleszewski JJ, Beraldi R, Martinez-Fernandez A, Terzic A, Nelson TJ (2014) Inhibition of DNA topoisomerase II selectively reduces the threat of tumorigenicity following induced pluripotent stem cell-based myocardial therapy. Stem Cells Dev 23:2274–2282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liao SY, Liu Y, Siu CW, Zhang Y, Lai WH, Au KW, Lee YK, Chan YC, Yip PM, Wu EX, Wu Y, Lau CP, Li RA, Tse HF (2010) Proarrhythmic risk of embryonic stem cell-derived cardiomyocyte transplantation in infarcted myocardium. Heart Rhythm 7:1852–1859

    Article  PubMed  Google Scholar 

  31. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sanchez-Freire V, Lee AS, Hu S, Abilez OJ, Liang P, Lan F, Huber BC, Ong SG, Hong WX, Huang M, Wu JC (2014) Effect of human donor cell source on differentiation and function of cardiac induced pluripotent stem cells. J Am Coll Cardiol 64:436–448

    Article  PubMed  PubMed Central  Google Scholar 

  33. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da SJ, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213–223

    Article  PubMed  Google Scholar 

  34. Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, Premer C, Kanelidis AJ, McCall F, Wang B, Balkan W, Rodriguez J, Rosado M, Morales A, Hatzistergos K, Natsumeda M, Margitich I, Schulman IH, Gomes SA, Mushtaq M, DiFede DL, Fishman JE, Pattany P, Zambrano JP, Heldman AW, Hare JM (2015) Synergistic effects of combined cell therapy for chronic ischemic cardiomyopathy. J Am Coll Cardiol 66:1990–1999

    Article  PubMed  Google Scholar 

  35. Golpanian S, Schulman IH, Ebert RF, Heldman AW, DiFede DL, Yang PC, Wu JC, Bolli R, Perin EC, Moye L, Simari RD, Wolf A, Hare JM (2016) Concise review: review and perspective of cell dosage and routes of administration from preclinical and clinical studies of stem cell therapy for heart disease. Stem Cells Transl Med 5:186–191

    Article  PubMed  Google Scholar 

  36. Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A, Miller L, Guetta E, Zipori D, Kedes LH, Kloner RA, Leor J (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    Article  PubMed  Google Scholar 

  37. Price MJ, Chou CC, Frantzen M, Miyamoto T, Kar S, Lee S, Shah PK, Martin BJ, Lill M, Forrester JS, Chen PS, Makkar RR (2006) Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 111:231–239

    Article  PubMed  Google Scholar 

  38. Brenner W, Aicher A, Eckey T, Massoudi S, Zuhayra M, Koehl U, Heeschen C, Kampen WU, Zeiher AM, Dimmeler S, Henze E (2004) 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. J Nucl Med 45:512–518

    CAS  PubMed  Google Scholar 

  39. Forest VF, Tirouvanziam AM, Perigaud C, Fernandes S, Fusellier MS, Desfontis JC, Toquet CS, Heymann MF, Crochet DP, Lemarchand PF (2010) Cell distribution after intracoronary bone marrow stem cell delivery in damaged and undamaged myocardium: implications for clinical trials. Stem Cell Res Ther 1:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nagaya N, Fujii T, Iwase T, Ohgushi H, Itoh T, Uematsu M, Yamagishi M, Mori H, Kangawa K, Kitamura S (2004) Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 287:H2670–H2676

    Article  CAS  PubMed  Google Scholar 

  41. Kraitchman DL, Tatsumi M, Gilson WD, Ishimori T, Kedziorek D, Walczak P, Segars WP, Chen HH, Fritzges D, Izbudak I, Young RG, Marcelino M, Pittenger MF, Solaiyappan M, Boston RC, Tsui BM, Wahl RL, Bulte JW (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li N, Yang YJ, Qian HY, Li Q, Zhang Q, Li XD, Dong QT, Xu H, Song L, Zhang H (2015) Intravenous administration of atorvastatin-pretreated mesenchymal stem cells improves cardiac performance after acute myocardial infarction: role of CXCR4. Am J Transl Res 7:1058–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122

    Article  PubMed  Google Scholar 

  44. Rigol M, Solanes N, Farre J, Roura S, Roque M, Berruezo A, Bellera N, Novensa L, Tamborero D, Prat-Vidal C, Huzman MA, Batlle M, Hoefsloot M, Sitges M, Ramirez J, Dantas AP, Merino A, Sanz G, Brugada J, Bayes-Genis A, Heras M (2010) Effects of adipose tissue-derived stem cell therapy after myocardial infarction: impact of the route of administration. J Card Fail 16:357–366

    Article  CAS  PubMed  Google Scholar 

  45. Hou D, Youssef EA, Brinton TJ, Zhang P, Rogers P, Price ET, Yeung AC, Johnstone BH, Yock PG, March KL (2005) Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112:I150–I156

    PubMed  Google Scholar 

  46. Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, Fishman J, Pattany P, McNiece I, Conte J, Schulman S, Wu K, Shah A, Breton E, Davis-Sproul J, Schwarz R, Feigenbaum G, Mushtaq M, Suncion VY, Lardo AC, Borrello I, Mendizabal A, Karas TZ, Byrnes J, Lowery M, Heldman AW, Hare JM (2014) Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: the Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 114:1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hare JM, Fishman JE, Gerstenblith G, DiFede VD, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong PFC, Ruiz P, Amador A, Da SJ, McNiece IK, Heldman AW, George R, Lardo A (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308:2369–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki K, Murtuza B, Beauchamp JR, Brand NJ, Barton PJ, Varela-Carver A, Fukushima S, Coppen SR, Partridge TA, Yacoub MH (2004) Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation 110:II219–II224

    PubMed  Google Scholar 

  49. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    Article  CAS  PubMed  Google Scholar 

  50. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    Article  CAS  PubMed  Google Scholar 

  51. Fidelis-de-Oliveira P, Werneck-de-Castro JP, Pinho-Ribeiro V, Shalom BC, Nascimento-Silva JH, Costa ESR, Cruz IS, Rangel RR, Goldenberg RC, Campos-de-Carvalho AC (2012) Soluble factors from multipotent mesenchymal stromal cells have antinecrotic effect on cardiomyocytes in vitro and improve cardiac function in infarcted rat hearts. Cell Transplant 21:1011–1021

    Article  CAS  PubMed  Google Scholar 

  52. Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, Searles CD, Davis ME (2015) Identification of therapeutic covariant MicroRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res 116:255–263

    Article  CAS  PubMed  Google Scholar 

  53. Kan CD, Li SH, Weisel RD, Zhang S, Li RK (2007) Recipient age determines the cardiac functional improvement achieved by skeletal myoblast transplantation. J Am Coll Cardiol 50:1086–1092

    Article  PubMed  Google Scholar 

  54. Zhuo Y, Li SH, Chen MS, Wu J, Kinkaid HY, Fazel S, Weisel RD, Li RK (2010) Aging impairs the angiogenic response to ischemic injury and the activity of implanted cells: combined consequences for cell therapy in older recipients. J Thorac Cardiovasc Surg 139:1286–1294 1294.e1–2

    Article  PubMed  Google Scholar 

  55. Brunt KR, Zhang Y, Mihic A, Li M, Li SH, Xue P, Zhang W, Basmaji S, Tsang K, Weisel RD, Yau TM, Li RK (2012) Role of WNT/beta-catenin signaling in rejuvenating myogenic differentiation of aged mesenchymal stem cells from cardiac patients. Am J Pathol 181:2067–2078

    Article  CAS  PubMed  Google Scholar 

  56. Kang K, Sun L, Xiao Y, Li SH, Wu J, Guo J, Jiang SL, Yang L, Yau TM, Weisel RD, Radisic M, Li RK (2012) Aged human cells rejuvenated by cytokine enhancement of biomaterials for surgical ventricular restoration. J Am Coll Cardiol 60:2237–2249

    Article  CAS  PubMed  Google Scholar 

  57. Li N, Zhang Q, Qian H, Jin C, Yang Y, Gao R (2014) Atorvastatin induces autophagy of mesenchymal stem cells under hypoxia and serum deprivation conditions by activating the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Chin Med J 127(6):1046–1051

    CAS  PubMed  Google Scholar 

  58. Drowley L, Okada M, Beckman S, Vella J, Keller B, Tobita K, Huard J (2010) Cellular antioxidant levels influence muscle stem cell therapy. Mol Ther 18:1865–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fedak PW (2008) Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin Thorac Cardiovasc Surg 20:87–93

    Article  PubMed  Google Scholar 

  60. Yu JX, Huang XF, Lv WM, Ye CS, Peng XZ, Zhang H, Xiao LB, Wang SM (2009) Combination of stromal-derived factor-1alpha and vascular endothelial growth factor gene-modified endothelial progenitor cells is more effective for ischemic neovascularization. J Vasc Surg 50:608–616

    Article  PubMed  Google Scholar 

  61. Roncalli J, Renault MA, Tongers J, Misener S, Thorne T, Kamide C, Jujo K, Tanaka T, Ii M, Klyachko E, Losordo DW (2011) Sonic hedgehog-induced functional recovery after myocardial infarction is enhanced by AMD3100-mediated progenitor-cell mobilization. J Am Coll Cardiol 57:2444–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Deuse T, Peter C, Fedak PW, Doyle T, Reichenspurner H, Zimmermann WH, Eschenhagen T, Stein W, Wu JC, Robbins RC, Schrepfer S (2009) Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 120:S247–S254

    Article  CAS  PubMed  Google Scholar 

  63. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, Kamide CE, Liu T, Gupta R, Sahoo S, Misener S, Kishore R, Losordo DW (2012) Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res 111:312–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mathison M, Gersch RP, Nasser A, Lilo S, Korman M, Fourman M, Hackett N, Shroyer K, Yang J, Ma Y, Crystal RG, Rosengart TK (2012) In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. J Am Heart Assoc 1:e005652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Rosengart TK, Fallon E, Crystal RG (2012) Cardiac biointerventions: Whatever happened to stem cell and gene therapy? Innovations 7:173–179

    PubMed  Google Scholar 

  66. Awada HK, Hwang MP, Wang Y (2016) Towards comprehensive cardiac repair and regeneration after myocardial infarction: aspects to consider and proteins to deliver. Biomaterials 82:94–112

    Article  CAS  PubMed  Google Scholar 

  67. Ong SG, Hausenloy DJ (2012) Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther 136:69–81

    Article  CAS  PubMed  Google Scholar 

  68. Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD, Wu JC (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal MicroRNA transfer. Circulation 130:S60–S69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee R, Feinbaum R, Ambros V (2004) A short history of a short RNA. Cell 116(Supplement 2):S89–S92

    Article  CAS  PubMed  Google Scholar 

  70. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jakob P, Doerries C, Briand S, Mocharla P, Krankel N, Besler C, Mueller M, Manes C, Templin C, Baltes C, Rudin M, Adams H, Wolfrum M, Noll G, Ruschitzka F, Luscher TF, Landmesser U (2012) Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126:2962–2975

    Article  CAS  PubMed  Google Scholar 

  72. Jansen F, Yang X, Hoelscher M, Cattelan A, Schmitz T, Proebsting S, Wenzel D, Vosen S, Franklin BS, Fleischmann BK, Nickenig G, Werner N (2013) Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation 128:2026–2038

    Article  CAS  PubMed  Google Scholar 

  73. Chen JJ, Zhou SH (2011) Mesenchymal stem cells overexpressing MiR-126 enhance ischemic angiogenesis via the AKT/ERK-related pathway. Cardiol J 18:675–681

    Article  PubMed  Google Scholar 

  74. Huang F, Zhu X, Hu XQ, Fang ZF, Tang L, Lu XL, Zhou SH (2013) Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med 31:484–492

    CAS  PubMed  Google Scholar 

  75. Liu J, van Mil A, Vrijsen K, Zhao J, Gao L, Metz CH, Goumans MJ, Doevendans PA, Sluijter JP (2011) MicroRNA-155 prevents necrotic cell death in human cardiomyocyte progenitor cells via targeting RIP1. J Cell Mol Med 15:1474–1482

    Article  CAS  PubMed  Google Scholar 

  76. Boon RA, Dimmeler S (2015) MicroRNAs in myocardial infarction. Nat Rev Cardiol 12:135–142

    Article  CAS  PubMed  Google Scholar 

  77. Xu Q, Seeger FH, Castillo J, Iekushi K, Boon RA, Farcas R, Manavski Y, Li YG, Assmus B, Zeiher AM, Dimmeler S (2012) Micro-RNA-34a contributes to the impaired function of bone marrow-derived mononuclear cells from patients with cardiovascular disease. J Am Coll Cardiol 59:2107–2117

    Article  CAS  PubMed  Google Scholar 

  78. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, LE Dorn, Condorelli G, Diwan A, Nerbonne JM, Dorn GN (2010) MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ Res 106:166–175

    Article  CAS  PubMed  Google Scholar 

  80. Izarra A, Moscoso I, Levent E, Canon S, Cerrada I, Diez-Juan A, Blanca V, Nunez-Gil IJ, Valiente I, Ruiz-Sauri A, Sepulveda P, Tiburcy M, Zimmermann WH, Bernad A (2014) miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep 3:1029–1042

    Article  CAS  Google Scholar 

  81. Chaput N, Thery C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33:419–440

    Article  CAS  PubMed  Google Scholar 

  82. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  83. Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7:e34653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Robbins PD, Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14:195–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Makridakis M, Roubelakis MG, Vlahou A (2013) Stem cells: insights into the secretome. Biochim Biophys Acta 1834:2380–2384

    Article  CAS  PubMed  Google Scholar 

  86. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marban E (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669

    Article  CAS  PubMed  Google Scholar 

  88. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El OR, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222

    Article  CAS  PubMed  Google Scholar 

  89. Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431:566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2:606–619

    Article  CAS  Google Scholar 

  91. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor ENE, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10:301–312

    Article  CAS  PubMed  Google Scholar 

  92. Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9:e88685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741

    Article  CAS  PubMed  Google Scholar 

  94. Wang X, Zhu H, Zhang X, Liu Y, Chen J, Medvedovic M, Li H, Weiss MJ, Ren X, Fan GC (2012) Loss of the miR-144/451 cluster impairs ischaemic preconditioning-mediated cardioprotection by targeting Rac-1. Cardiovasc Res 94:379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Giricz Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzas EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78

    Article  CAS  PubMed  Google Scholar 

  96. Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, Tanaka M, Osada-Oka M, Shimada K, Miura K, Yoshiyama M, Iwao H (2015) Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol 178:239–246

    Article  PubMed  Google Scholar 

  97. Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 8:e73304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang M, Chen Z, Hu S, Jia F, Li Z, Hoyt G, Robbins RC, Kay MA, Wu JC (2009) Novel minicircle vector for gene therapy in murine myocardial infarction. Circulation 120:S230–S237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109:894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103:530–541

    Article  CAS  PubMed  Google Scholar 

  101. Christman KL, Lee RJ (2006) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 48:907–913

    Article  CAS  PubMed  Google Scholar 

  102. Ye L, Zimmermann WH, Garry DJ, Zhang J (2013) Patching the heart: cardiac repair from within and outside. Circ Res 113:922–932

    Article  CAS  PubMed  Google Scholar 

  103. Radisic M, Christman KL (2013) Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 88:884–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Geckil H, Xu F, Zhang X, Moon S, Demirci U (2010) Engineering hydrogels as extracellular matrix mimics. Nanomedicine 5:469–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mayfield AE, Tilokee EL, Latham N, McNeill B, Lam BK, Ruel M, Suuronen EJ, Courtman DW, Stewart DJ, Davis DR (2014) The effect of encapsulation of cardiac stem cells within matrix-enriched hydrogel capsules on cell survival, post-ischemic cell retention and cardiac function. Biomaterials 35:133–142

    Article  CAS  PubMed  Google Scholar 

  106. Miyagi Y, Chiu LL, Cimini M, Weisel RD, Radisic M, Li RK (2011) Biodegradable collagen patch with covalently immobilized VEGF for myocardial repair. Biomaterials 32:1280–1290

    Article  CAS  PubMed  Google Scholar 

  107. Wang H, Zhang X, Li Y, Ma Y, Zhang Y, Liu Z, Zhou J, Lin Q, Wang Y, Duan C, Wang C (2010) Improved myocardial performance in infarcted rat heart by co-injection of basic fibroblast growth factor with temperature-responsive chitosan hydrogel. J Heart Lung Transplant 29:881–887

    Article  CAS  PubMed  Google Scholar 

  108. Ruvinov E, Leor J, Cohen S (2011) The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials 32:565–578

    Article  CAS  PubMed  Google Scholar 

  109. Zimmermann WH, Didie M, Wasmeier GH, Nixdorff U, Hess A, Melnychenko I, Boy O, Neuhuber WL, Weyand M, Eschenhagen T (2002) Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106:I151–I157

    PubMed  Google Scholar 

  110. Zimmermann WH, Melnychenko I, Wasmeier G, Didie M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12:452–458

    Article  CAS  PubMed  Google Scholar 

  111. Furuta A, Miyoshi S, Itabashi Y, Shimizu T, Kira S, Hayakawa K, Nishiyama N, Tanimoto K, Hagiwara Y, Satoh T, Fukuda K, Okano T, Ogawa S (2006) Pulsatile cardiac tissue grafts using a novel three-dimensional cell sheet manipulation technique functionally integrates with the host heart, in vivo. Circ Res 98:705–712

    Article  CAS  PubMed  Google Scholar 

  112. Birla RK, Huang YC, Dennis RG (2007) Development of a novel bioreactor for the mechanical loading of tissue-engineered heart muscle. Tissue Eng 13:2239–2248

    Article  CAS  PubMed  Google Scholar 

  113. Lasher RA, Pahnke AQ, Johnson JM, Sachse FB, Hitchcock RW (2012) Electrical stimulation directs engineered cardiac tissue to an age-matched native phenotype. J Tissue Eng 3:2041731412455354

    Article  PubMed  PubMed Central  Google Scholar 

  114. Morgan KY, Black LR (2014) Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A 20:1654–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction: a 5-year update. J Am Coll Cardiol 58:2615–2629

    Article  CAS  PubMed  Google Scholar 

  116. Christman KL, Vardanian AJ, Fang Q, Sievers RE, Fok HH, Lee RJ (2004) Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J Am Coll Cardiol 44:654–660

    Article  CAS  PubMed  Google Scholar 

  117. Nakamuta JS, Danoviz ME, Marques FL, Dos SL, Becker C, Goncalves GA, Vassallo PF, Schettert IT, Tucci PJ, Krieger JE (2009) Cell therapy attenuates cardiac dysfunction post myocardial infarction: effect of timing, routes of injection and a fibrin scaffold. PLoS One 4:e6005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Guo HD, Wang HJ, Tan YZ, Wu JH (2011) Transplantation of marrow-derived cardiac stem cells carried in fibrin improves cardiac function after myocardial infarction. Tissue Eng Part A 17:45–58

    Article  CAS  PubMed  Google Scholar 

  119. Danoviz ME, Nakamuta JS, Marques FL, Dos SL, Alvarenga EC, Dos SA, Antonio EL, Schettert IT, Tucci PJ, Krieger JE (2010) Rat adipose tissue-derived stem cells transplantation attenuates cardiac dysfunction post infarction and biopolymers enhance cell retention. PLoS One 5:e12077

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC (2005) Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation 112:I173–I177

    PubMed  Google Scholar 

  121. Wang T, Jiang XJ, Tang QZ, Li XY, Lin T, Wu DQ, Zhang XZ, Okello E (2009) Bone marrow stem cells implantation with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater 5:2939–2944

    Article  CAS  PubMed  Google Scholar 

  122. Pascual-Gil S, Garbayo E, Diaz-Herraez P, Prosper F, Blanco-Prieto MJ (2015) Heart regeneration after myocardial infarction using synthetic biomaterials. J Control Release 203:23–38

    Article  CAS  PubMed  Google Scholar 

  123. Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, Gorman JR, Gorman RC, Burdick JA (2010) Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci USA 107:11507–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM (2006) Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation 114:2627–2635

    Article  PubMed  Google Scholar 

  125. Tous E, Purcell B, Ifkovits JL, Burdick JA (2011) Injectable acellular hydrogels for cardiac repair. J Cardiovasc Transl Res 4:528–542

    Article  PubMed  Google Scholar 

  126. Lin YD, Luo CY, Hu YN, Yeh ML, Hsueh YC, Chang MY, Tsai DC, Wang JN, Tang MJ, Wei EI, Springer ML, Hsieh PC (2012) Instructive nanofiber scaffolds with VEGF create a microenvironment for arteriogenesis and cardiac repair. Sci Transl Med 4:146ra109

    PubMed  Google Scholar 

  127. Tatard VM, Venier-Julienne MC, Saulnier P, Prechter E, Benoit JP, Menei P, Montero-Menei CN (2005) Pharmacologically active microcarriers: a tool for cell therapy. Biomaterials 26:3727–3737

    Article  CAS  PubMed  Google Scholar 

  128. Giteau A, Venier-Julienne MC, Marchal S, Courthaudon JL, Sergent M, Montero-Menei C, Verdier JM, Benoit JP (2008) Reversible protein precipitation to ensure stability during encapsulation within PLGA microspheres. Eur J Pharm Biopharm 70:127–136

    Article  CAS  PubMed  Google Scholar 

  129. Madonna R, Petrov L, Teberino MA, Manzoli L, Karam JP, Renna FV, Ferdinandy P, Montero-Menei CN, Yla-Herttuala S, De Caterina R (2015) Transplantation of adipose tissue mesenchymal cells conjugated with VEGF-releasing microcarriers promotes repair in murine myocardial infarction. Cardiovasc Res 108:39–49

    Article  PubMed  Google Scholar 

  130. Thomas ED, Blume KG (1999) Historical markers in the development of allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant 5:341–346

    Article  CAS  PubMed  Google Scholar 

  131. Buja LM, Vela D (2010) Immunologic and inflammatory reactions to exogenous stem cells: implications for experimental studies and clinical trials for myocardial repair. J Am Coll Cardiol 56:1693–1700

    Article  CAS  PubMed  Google Scholar 

  132. Zhao T, Zhang Z, Rong Z, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Article  CAS  PubMed  Google Scholar 

  133. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    Article  PubMed  Google Scholar 

  134. Poncelet AJ, Vercruysse J, Saliez A, Gianello P (2007) Although pig allogeneic mesenchymal stem cells are not immunogenic in vitro, intracardiac injection elicits an immune response in vivo. Transplantation 83:783–790

    Article  PubMed  Google Scholar 

  135. Spaggiari GM, Capobianco A, Abdelrazik H, Becchetti F, Mingari MC, Moretta L (2008) Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 111:1327–1333

    Article  CAS  PubMed  Google Scholar 

  136. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, Robey PG, Leelahavanichkul K, Koller BH, Brown JM, Hu X, Jelinek I, Star RA, Mezey E (2009) Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15:42–49

    Article  CAS  PubMed  Google Scholar 

  137. Dhingra S, Li P, Huang XP, Guo J, Wu J, Mihic A, Li SH, Zang WF, Shen D, Weisel RD, Singal PK, Li RK (2013) Preserving prostaglandin E2 level prevents rejection of implanted allogeneic mesenchymal stem cells and restores postinfarction ventricular function. Circulation 128:S69–S78

    Article  CAS  PubMed  Google Scholar 

  138. Yamanaka S (2012) Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10:678–684

    Article  CAS  PubMed  Google Scholar 

  139. Okano H, Nakamura M, Yoshida K, Okada Y, Tsuji O, Nori S, Ikeda E, Yamanaka S, Miura K (2013) Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res 112:523–533

    Article  CAS  PubMed  Google Scholar 

  140. Guha P, Morgan JW, Mostoslavsky G, Rodrigues NP, Boyd AS (2013) Lack of immune response to differentiated cells derived from syngeneic induced pluripotent stem cells. Cell Stem Cell 12:407–412

    Article  CAS  PubMed  Google Scholar 

  141. Araki R, Uda M, Hoki Y, Sunayama M, Nakamura M, Ando S, Sugiura M, Ideno H, Shimada A, Nifuji A, Abe M (2013) Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 494:100–104

    Article  CAS  PubMed  Google Scholar 

  142. Kaneko S, Yamanaka S (2013) To be immunogenic, or not to be: that’s the iPSC question. Cell Stem Cell 12:385–386

    Article  CAS  PubMed  Google Scholar 

  143. Cao J, Li X, Lu X, Zhang C, Yu H, Zhao T (2014) Cells derived from iPSC can be immunogenic—yes or no? Protein Cell 5:1–3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Dhodapkar KM, Feldman D, Matthews P, Radfar S, Pickering R, Turkula S, Zebroski H, Dhodapkar MV (2010) Natural immunity to pluripotency antigen OCT4 in humans. Proc Natl Acad Sci USA 107:8718–8723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Solomon S, Pitossi F, Rao MS (2015) Banking on iPSC- Is it Doable and is it Worthwhile. Stem Cell Rev Rep 11:1–10

    Article  CAS  Google Scholar 

  146. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8:409–412

    Article  CAS  PubMed  Google Scholar 

  147. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152

    Article  CAS  PubMed  Google Scholar 

  148. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA (2005) Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 366:2019–2025

    Article  PubMed  Google Scholar 

  149. Pan Q, Fan S, Wang X, Zhao X, Pan M, Wang C, Shen J (2011) The distribution of HLA-A, -B, and -DRB1 alleles and haplotypes in inhabitants of Guizhou Province of China. J Biomed Res 25:328–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Andrews PW, Cavagnaro J, Deans R, Feigal E, Horowitz E, Keating A, Rao M, Turner M, Wilmut I, Yamanaka S (2014) Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nat Biotechnol 32:724–726

    Article  CAS  PubMed  Google Scholar 

  151. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Porrello ER, Mahmoud AI, Simpson E, Johnson BA, Grinsfelder D, Canseco D, Mammen PP, Rothermel BA, Olson EN, Sadek HA (2013) Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc Natl Acad Sci USA 110:187–192

    Article  CAS  PubMed  Google Scholar 

  153. Rui L, Yu N, Hong L, Feng H, Chunyong H, Jian M, Zhe Z, Shengshou H (2014) Extending the time window of mammalian heart regeneration by thymosin beta 4. J Cell Mol Med 18:2417–2424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Li Y, Shen Z, Yu X (2015) Transport of microRNAs via exosomes. Nat Rev Cardiol 12:198

    Article  PubMed  Google Scholar 

  155. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We appreciate the multiple contributions made by Yuan Yu at the China Oxford Centre for International Health Research in the realms of writing assistance and proof reading of the review. This study was supported by Grants from the National Natural Science Foundation of China (81170129 to Yuejin Yang) and 863 Program of China (2011AA020110, 2013AA020101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Yang.

Ethics declarations

Conflict of interest

All of the authors have no conflicts of interest or financial ties to disclose.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Tian, X., Li, Q. et al. New strategies for improving stem cell therapy in ischemic heart disease. Heart Fail Rev 21, 737–752 (2016). https://doi.org/10.1007/s10741-016-9576-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9576-1

Keywords

Navigation