Skip to main content

Advertisement

Log in

Tissue thyroid hormones and thyronamines

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

It has been known for a long time that changes in cardiac function are a major component of the clinical presentation of thyroid disease. Increased heart rate and hyperdynamic circulation are hallmarks of hyperthyroidism, while bradycardia and decreased contractility characterize hypothyroidism. Recent findings have provided novel insights in the physiology and pathophysiology of heart regulation by thyroid hormones. In this review, we summarize the present knowledge on thyroxine (T4) transport and metabolism and on the biochemical pathways leading to genomic and non-genomic effects produced by 3,5,3′-triiodothyronine (T3) and by its active metabolites, particularly 3,5-diiodothyronine (T2) and 3-iodothyronamine (T1AM). On this basis, specific issues of special interest for cardiology are discussed, namely (1) relevance of the regulation of proteins involved in the control of calcium homeostasis and in pacemaker cell activity, due to non-genomic as well as to classical genomic effects; (2) stimulation of fatty acid oxidation by T2 and T1AM, the latter also causing a negative inotropic and chronotropic action at micromolar concentrations; (3) induction of D3 deiodinase in heart failure, potentially causing selective cardiac hypothyroidism, whose clinical implications are still controversial; and (4) cardioprotective effect of T1AM, possibly occurring at physiological concentrations, and relevance of T3 and of thyroid hormone receptor α1 in post-infarction repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Akt:

Ak strain transforming

AMI:

Acute myocardial infarction

CHF:

Chronic heart failure

CSF:

Cerebrospinal fluid

cTn:

Cardiac troponin

D1:

Type I deiodinase

D2:

Type II deiodinase

D3:

Type III deiodinase

EF:

Ejection fraction

ERK:

Extracellular regulated kinase

FT3 :

Free 3,5,3′-triiodothyronine

FT4 :

Free thyroxine

HCN2:

Hyperpolarization-activated cyclic nucleotide-gated channel 2

HIF1:

Hypoxia-induced factor 1

I KI :

Inward rectifying potassium current

I Na :

Sodium current

I t :

Transient outward current

LAT:

Large neutral amino acid transporters

MAPK:

Mitogen-activated protein kinase

MCT:

Monocarboxylate transporter

MHC:

Myosin heavy chain

mTOR:

Mammalian target of rapamycin

NCX:

Sodium/calcium exchanger

NO:

Nitric oxide

NTCP:

Sodium/taurocholate-cotransporting polypeptide

OATP:

Organic anion-transporting polypeptide

PI3K:

Phosphatidylinositol 3-kinase

rT3 :

3,3′,5′-Triiodothyronine

SERCA:

Sarcoplasmic reticulum calcium-ATPase

SLC:

Solute carrier

SR:

Sarcoplasmic reticulum

ssTn:

Slow skeletal troponin

T0AM:

Thyronamine

T1AM:

3-Iodothyronamine

T2AM:

3,5-Diiodothyronamine

T2 :

3,5-Diiodothyronine

T3 :

3,5,3′-Triiodothyronine

T4 :

Thyroxine

TAAR1:

Trace amine-associated receptor 1

TH:

Thyroid hormone

Tn:

Troponin

TR:

Thyroid hormone receptor

TRE:

Thyroid hormone response element

TSH:

Thyroid-stimulating hormone

VSMC:

Vascular smooth muscle cell

References

  1. Davis PJ, Leonard JL, Davis FB (2008) Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 29(2):211–218. doi:10.1016/j.yfrne.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ (2001) Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 22(4):451–476. doi:10.1210/edrv.22.4.0435

    Article  CAS  PubMed  Google Scholar 

  3. Bianco AC, Kim BW (2006) Deiodinases: implications of the local control of thyroid hormone action. J Clin Investig 116(10):2571–2579. doi:10.1172/JCI29812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A et al (2010) Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology 151(10):5063–5073. doi:10.1210/en.2010-0491

    Article  CAS  PubMed  Google Scholar 

  5. Piehl S, Hoefig CS, Scanlan TS, Köhrle J (2011) Thyronamines—past, present, and future. Endocr Rev 32(1):64–80. doi:10.1210/er.2009-0040

    Article  CAS  PubMed  Google Scholar 

  6. Zucchi R, Accorroni A, Chiellini G (2014) Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol 5:402. doi:10.3389/fphys.2014.00402

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moreno M, Silvestri E, De Matteis R, de Lange P, Lombardi A, Glinni D et al (2011) 3,5-Diiodo-l-thyronine prevents high-fat-diet-induced insulin resistance in rat skeletal muscle through metabolic and structural adaptations. FASEB J 25(10):3312–3324. doi:10.1096/fj.11-181982

    Article  CAS  PubMed  Google Scholar 

  8. Sorimachi K, Robbins J (1978) Uptake and metabolism of thyroid hormones by cultured monkey hepatocarcinoma cells. Effects of potassium cyanide and dinitrophenol. Biochim Biophys Acta 542(3):515–26. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/567494

  9. Robbins J, Rall JE (1957) The interaction of thyroid hormones and protein in biological fluids. Recent Prog Horm Res 13:161–202; discussion 202–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13477808

  10. Christensen HN, Hess B, Riggs TR (1954) Concentration of taurine, beta-alanine, and triiodothyronine by ascites carcinoma cells. Cancer Res 14(2):124–127. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/13126947

  11. Everts ME, Verhoeven FA, Bezstarosti K, Moerings EP, Hennemann G, Visser TJ, Lamers JM (1996) Uptake of thyroid hormones in neonatal rat cardiac myocytes. Endocrinology 137(10):4235–4242. doi:10.1210/endo.137.10.8828482

    CAS  PubMed  Google Scholar 

  12. Heuer H, Maier MK, Iden S, Mittag J, Friesema ECH, Visser TJ, Bauer K (2005) The monocarboxylate transporter 8 linked to human psychomotor retardation is highly expressed in thyroid hormone-sensitive neuron populations. Endocrinology 146(4):1701–1706. doi:10.1210/en.2004-1179

    Article  CAS  PubMed  Google Scholar 

  13. Friesema ECH, Jansen J, Visser T (2005) Thyroid hormone transporters. Biochem Soc Trans 33(1):228–232. doi:10.1042/BST0330228

    Article  CAS  PubMed  Google Scholar 

  14. Friesema ECH, Docter R, Moerings EPCM, Stieger B, Hagenbuch B, Meier PJ et al (1999) Identification of thyroid hormone transporters. Biochem Biophys Res Commun 254(2):497–501. doi:10.1006/bbrc.1998.9974

    Article  CAS  PubMed  Google Scholar 

  15. Dumitrescu AM, Refetoff S (2013) The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 1830(7):3987–4003. doi:10.1016/j.bbagen.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  16. Hagenbuch B (2007) Cellular entry of thyroid hormones by organic anion transporting polypeptides. Best Pract Res Clin Endocrinol Metab 21(2):209–221. doi:10.1016/j.beem.2007.03.004

    Article  CAS  PubMed  Google Scholar 

  17. Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch Eur J Physiol 447(5):653–665. doi:10.1007/s00424-003-1168-y

    Article  CAS  Google Scholar 

  18. Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64(1):1–9. doi:10.1002/iub.573

    Article  CAS  PubMed  Google Scholar 

  19. Friesema ECH, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278(41):40128–40135. doi:10.1074/jbc.M300909200

    Article  CAS  PubMed  Google Scholar 

  20. Friesema ECH, Jansen J, Jachtenberg J-W, Visser WE, Kester MHA, Visser TJ (2008) Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol (Baltimore, Md.) 22(6):1357–1369. doi:10.1210/me.2007-0112

    Article  CAS  Google Scholar 

  21. Anwer MS, Stieger B (2014) Sodium-dependent bile salt transporters of the SLC10A transporter family: more than solute transporters. Pflügers Arch Eur J Physiol 466(1):77–89. doi:10.1007/s00424-013-1367-0

    Article  CAS  Google Scholar 

  22. Visser WE, Friesema ECH, Visser TJ (2011) Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol (Baltimore, Md.) 25(1):1–14. doi:10.1210/me.2010-0095

    Article  CAS  Google Scholar 

  23. Ritchie JW, Peter GJ, Shi YB, Taylor PM (1999) Thyroid hormone transport by 4F2hc-IU12 heterodimers expressed in Xenopus oocytes. J Endocrinol 163(2):R5–R9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10556789

  24. Friesema ECH, Docter R, Moerings EPCM, Verrey F, Krenning EP, Hennemann G, Visser TJ (2001) Thyroid hormone transport by the heterodimeric human system L amino acid transporter. Endocrinology 142(10):4339–4348. doi:10.1210/endo.142.10.8418

    Article  CAS  PubMed  Google Scholar 

  25. Morimoto E, Kanai Y, Kim DK, Chairoungdua A, Choi HW, Wempe MF et al (2008) Establishment and characterization of mammalian cell lines stably expressing human L-type amino acid transporters. J Pharmacol Sci 108(4):505–516. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19075510

  26. Hagenbuch B, Meier PJ (2003) The superfamily of organic anion transporting polypeptides. Biochim Biophys Acta 1609(1):1–18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12507753

  27. Huber RD, Gao B, Sidler Pfändler M-A, Zhang-Fu W, Leuthold S, Hagenbuch B et al (2007) Characterization of two splice variants of human organic anion transporting polypeptide 3A1 isolated from human brain. Am J Physiol Cell Physiol 292(2):C795–C806. doi:10.1152/ajpcell.00597.2005

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S et al (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34(36):11929–11947. doi:10.1523/JNEUROSCI.1860-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leuthold S, Hagenbuch B, Mohebbi N, Wagner CA, Meier PJ, Stieger B (2009) Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters. Am J Physiol Cell Physiol 296(3):C570–C582. doi:10.1152/ajpcell.00436.2008

    Article  CAS  PubMed  Google Scholar 

  30. Abe T, Kakyo M, Sakagami H, Tokui T, Nishio T, Tanemoto M et al (1998) Molecular characterization and tissue distribution of a new organic anion transporter subtype (oatp3) that transports thyroid hormones and taurocholate and comparison with oatp2. J Biol Chem 273(35):22395–22401. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9712861

  31. Rosic M, Pantovic S, Lucic A, Ribarac-Stepic N, Andjelkovic I (2001) Kinetics of thyroxine (T(4)) and triiodothyronine (T(3)) transport in the isolated rat heart. Exp Physiol 86(1):13–18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11429614

  32. Abe T, Suzuki T, Unno M, Tokui T, Ito S (2002) Thyroid hormone transporters: recent advances. Trends Endocrinol Metab TEM 13(5):215–220. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12185668

  33. Bonen A, Heynen M, Hatta H (2006) Distribution of monocarboxylate transporters MCT1–MCT8 in rat tissues and human skeletal muscle. Appl Physiol Nutr Metab = Physiologie appliquée, nutrition et métabolisme 31(1):31–39. doi:10.1139/h05-002

    Article  CAS  PubMed  Google Scholar 

  34. Grube M, Köck K, Oswald S, Draber K, Meissner K, Eckel L et al (2006) Organic anion transporting polypeptide 2B1 is a high-affinity transporter for atorvastatin and is expressed in the human heart. Clin Pharmacol Ther 80(6):607–620. doi:10.1016/j.clpt.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  35. Fujiwara K, Adachi H, Nishio T, Unno M, Tokui T, Okabe M et al (2001) Identification of thyroid hormone transporters in humans: different molecules are involved in a tissue-specific manner. Endocrinology 142(5):2005–2012. doi:10.1210/endo.142.5.8115

    CAS  PubMed  Google Scholar 

  36. Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NC, Freake HC (1987) Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev 8(3):288–308. doi:10.1210/edrv-8-3-288

    Article  CAS  PubMed  Google Scholar 

  37. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR (2002) Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23(1):38–89. doi:10.1210/edrv.23.1.0455

    Article  CAS  PubMed  Google Scholar 

  38. Kuiper GGJM, Kester MHA, Peeters RP, Visser TJ (2005) Biochemical mechanisms of thyroid hormone deiodination. Thyroid 15(8):787–798. doi:10.1089/thy.2005.15.787

    Article  CAS  PubMed  Google Scholar 

  39. Gereben B, Zeöld A, Dentice M, Salvatore D, Bianco AC (2008) Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci CMLS 65(4):570–590. doi:10.1007/s00018-007-7396-0

    Article  CAS  PubMed  Google Scholar 

  40. Fekkes D, van Overmeeren-Kaptein E, Docter R, Hennemann G, Visser TJ (1979) Location of rat liver iodothyronine deiodinating enzymes in the endoplasmic reticulum. Biochim Biophys Acta 587(1):12–19. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/226168

    Article  CAS  PubMed  Google Scholar 

  41. Silva JE, Larsen PR (1978) Contributions of plasma triiodothyronine and local thyroxine monodeiodination to triiodothyronine to nuclear triiodothyronine receptor saturation in pituitary, liver, and kidney of hypothyroid rats. Further evidence relating saturation of pituitary nuclear. J Clin Investig 61(5):1247–1259. doi:10.1172/JCI109041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Larsen PR, Silva JE, Kaplan MM (1981) Relationships between circulating and intracellular thyroid hormones: physiological and clinical implications. Endocr Rev 2(1):87–102. doi:10.1210/edrv-2-1-87

    Article  CAS  PubMed  Google Scholar 

  43. Otten MH, Mol JA, Visser TJ (1983) Sulfation preceding deiodination of iodothyronines in rat hepatocytes. Science (New York, N.Y.) 221(4605):81–83. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6857270

  44. Mol JA, Visser TJ (1985) Rapid and selective inner ring deiodination of thyroxine sulfate by rat liver deiodinase. Endocrinology 117(1):8–12. doi:10.1210/endo-117-1-8

    Article  CAS  PubMed  Google Scholar 

  45. Yonemoto T, Nishikawa M, Matsubara H, Mori Y, Toyoda N, Gondou A et al (1999) Type 1 iodothyronine deiodinase in heart—effects of triiodothyronine and angiotensin II on its activity and mRNA in cultured rat myocytes. Endocrine J 46(5):621–628. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10670746

  46. Iodothyronine 5′-deiodinase activity in cultured rat myocardial cells: characteristics and effects of triiodothyronine and angiotensin II: endocrinology, vol 128, no 6 (n.d.). Retrieved 2 Dec 2015 from http://press.endocrine.org/doi/pdf/10.1210/endo-128-6-3105

  47. Maciel RM, Ozawa Y, Chopra IJ (1979) Subcellular localization of thyroxine and reverse triiodothyronine outer ring monodeiodinating activities. Endocrinology 104(2):365–371. doi:10.1210/endo-104-2-365

    Article  CAS  PubMed  Google Scholar 

  48. Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. A selenoprotein differentially expressed and regulated in human and rat brain and other tissues. J Clin Investig 98(2):405–417. doi:10.1172/JCI118806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pachucki J, Hopkins J, Peeters R, Tu H, Carvalho SD, Kaulbach H et al (2001) Type 2 iodothyronine deiodinase transgene expression in the mouse heart causes cardiac-specific thyrotoxicosis. Endocrinology 142(1):13–20. doi:10.1210/endo.142.1.7907

    CAS  PubMed  Google Scholar 

  50. Dentice M, Morisco C, Vitale M, Rossi G, Fenzi G, Salvatore D (2003) The different cardiac expression of the type 2 iodothyronine deiodinase gene between human and rat is related to the differential response of the Dio2 genes to Nkx-2.5 and GATA-4 transcription factors. Mol Endocrinol (Baltimore, Md.) 17(8):1508–1521. doi:10.1210/me.2002-0348

    Article  CAS  Google Scholar 

  51. Wagner MS, Morimoto R, Dora JM, Benneman A, Pavan R, Maia AL (2003) Hypothyroidism induces type 2 iodothyronine deiodinase expression in mouse heart and testis. J Mol Endocrinol 31(3):541–550. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14664714

  52. Huang H, Marsh-Armstrong N, Brown DD (1999) Metamorphosis is inhibited in transgenic Xenopus laevis tadpoles that overexpress type III deiodinase. Proc Natl Acad Sci USA 96(3):962–967. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=15333&tool=pmcentrez&rendertype=abstract

  53. Santini F, Chopra IJ, Hurd RE, Solomon DH, Teco GN (1992) A study of the characteristics of the rat placental iodothyronine 5-monodeiodinase: evidence that it is distinct from the rat hepatic iodothyronine 5′-monodeiodinase. Endocrinology 130(4):2325–2332. doi:10.1210/endo.130.4.1547744

    CAS  PubMed  Google Scholar 

  54. Olivares EL, Marassi MP, Fortunato RS, da Silva ACM, Costa-e-Sousa RH, Araújo IG et al (2007) Thyroid function disturbance and type 3 iodothyronine deiodinase induction after myocardial infarction in rats a time course study. Endocrinology 148(10):4786–4792. doi:10.1210/en.2007-0043

    Article  CAS  PubMed  Google Scholar 

  55. Wassen FWJS, Schiel AE, Kuiper GGJM, Kaptein E, Bakker O, Visser TJ, Simonides WS (2002) Induction of thyroid hormone-degrading deiodinase in cardiac hypertrophy and failure. Endocrinology 143(7):2812–2815. doi:10.1210/endo.143.7.8985

    Article  CAS  PubMed  Google Scholar 

  56. Senese R, Cioffi F, de Lange P, Goglia F, Lanni A (2014) Thyroid: biological actions of “nonclassical” thyroid hormones. J Endocrinol 221(2):R1–R12. doi:10.1530/JOE-13-0573

    Article  CAS  PubMed  Google Scholar 

  57. Lehmphul I, Brabant G, Wallaschofski H, Ruchala M, Strasburger CJ, Köhrle J, Wu Z (2014) Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9):1350–1360. doi:10.1089/thy.2013.0688

    Article  CAS  PubMed  Google Scholar 

  58. Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O et al (1998) 3,3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83(9):3071–3077. doi:10.1210/jcem.83.9.5080

    CAS  PubMed  Google Scholar 

  59. Soldin OP, Soldin SJ (2011) Thyroid hormone testing by tandem mass spectrometry. Clin Biochem 44(1):89–94. doi:10.1016/j.clinbiochem.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  60. Jonklaas J, Sathasivam A, Wang H, Finigan D, Soldin OP, Burman KD, Soldin SJ (2014) 3,3′-diiodothyronine concentrations in hospitalized or thyroidectomized patients: results from a pilot study. Endocrine Pract 20(8):797–807. doi:10.4158/EP13453.OR

    Article  Google Scholar 

  61. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ et al (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10(6):638–642. doi:10.1038/nm1051

    Article  CAS  PubMed  Google Scholar 

  62. Hoefig CS, Renko K, Piehl S, Scanlan TS, Bertoldi M, Opladen T et al (2012) Does the aromatic l-amino acid decarboxylase contribute to thyronamine biosynthesis? Mol Cell Endocrinol 349(2):195–201. doi:10.1016/j.mce.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  63. Hoefig CS, Wuensch T, Rijntjes E, Lehmphul I, Daniel H, Schweizer U et al (2015) Biosynthesis of 3-iodothyronamine from l-thyroxine in murine intestinal tissue. Endocrinology. doi:10.1210/en.2014-1499

    Google Scholar 

  64. Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, DeBarber A et al (2007) Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J 21(7):1597–1608. doi:10.1096/fj.06-7474com

    Article  CAS  PubMed  Google Scholar 

  65. Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1985) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.1038/324641a0

    Article  Google Scholar 

  66. Sap J, Muñoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A et al (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324(6098):635–640. doi:10.1038/324635a0

    Article  CAS  PubMed  Google Scholar 

  67. Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H, Scanlan TS et al (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58(4):705–711. doi:10.1124/pr.58.4.3

    Article  CAS  PubMed  Google Scholar 

  68. Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga-Carvalho TM, Wondisford FE (2012) Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26(6):926–939. doi:10.1210/me.2011-1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schwartz HL, Lazar MA, Oppenheimer JH (1994) Widespread distribution of immunoreactive thyroid hormone beta 2 receptor (TR beta 2) in the nuclei of extrapituitary rat tissues. J Biol Chem 269(40):24777–24782. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7929155

  70. Johansson C, Vennström B, Thorén P (1998) Evidence that decreased heart rate in thyroid hormone receptor-alpha1-deficient mice is an intrinsic defect. Am J Physiol 275(2 Pt 2):R640–R646. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9688704

  71. Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R et al (2001) Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142(2):544–550. doi:10.1210/endo.142.2.7935

    CAS  PubMed  Google Scholar 

  72. Yen PM (2001) Physiological and molecular basis of thyroid hormone action. Physiol Rev 81(3):1097–1142. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11427693

  73. McKenna NJ, O’Malley BW (2002) Combinatorial control of gene expression by nuclear receptors and coregulators. Cell 108(4):465–474. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11909518

  74. Cheng SY (2000) Multiple mechanisms for regulation of the transcriptional activity of thyroid hormone receptors. Rev Endocr Metab Disord 1(1–2):9–18. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11704997

  75. Hu X, Lazar MA (1999) The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402(6757):93–96. doi:10.1038/47069

    Article  CAS  PubMed  Google Scholar 

  76. Rosenfeld MG, Glass CK (2001) Coregulator codes of transcriptional regulation by nuclear receptors. J Biol Chem 276(40):36865–36868. doi:10.1074/jbc.R100041200

    Article  CAS  PubMed  Google Scholar 

  77. Wu Y, Koenig RJ (2000) Gene regulation by thyroid hormone. Trends Endocrinol Metab TEM 11(6):207–211. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10878749

  78. Reiser PJ, Moss RL, Giulian GG, Greaser ML (1985) Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J Biol Chem 260(16):9077–9080. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4019463

  79. Gustafson TA, Markham BE, Morkin E (1986) Effects of thyroid hormone on alpha-actin and myosin heavy chain gene expression in cardiac and skeletal muscles of the rat: measurement of mRNA content using synthetic oligonucleotide probes. Circ Res 59(2):194–201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3742743

  80. Morkin E, Flink IL, Goldman S Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog Cardiovasc Dis 25(5):435–464. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6221355

  81. Gambke B, Lyons GE, Haselgrove J, Kelly AM, Rubinstein NA (1983) Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles. FEBS Lett 156(2):335–339. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6852266

  82. Butler-Browne GS, Herlicoviez D, Whalen RG (1984) Effects of hypothyroidism on myosin isozyme transitions in developing rat muscle. FEBS Lett 166(1):71–75. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6692924

  83. Averyhart-Fullard V, Fraker LD, Murphy AM, Solaro RJ (1994) Differential regulation of slow-skeletal and cardiac troponin I mRNA during development and by thyroid hormone in rat heart. J Mol Cell Cardiol 26(5):609–616. doi:10.1006/jmcc.1994.1073

    Article  CAS  PubMed  Google Scholar 

  84. Huang X, Lee KJ, Riedel B, Zhang C, Lemanski LF, Walker JW (2000) Thyroid hormone regulates slow skeletal troponin I gene inactivation in cardiac troponin I null mouse hearts. J Mol Cell Cardiol 32(12):2221–2228. doi:10.1006/jmcc.2000.1249

    Article  CAS  PubMed  Google Scholar 

  85. Zarain-Herzberg A, Marques J, Sukovich D, Periasamy M (1994) Thyroid hormone receptor modulates the expression of the rabbit cardiac sarco (endo) plasmic reticulum Ca(2+)-ATPase gene. J Biol Chem 269(2):1460–1467. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8166809

  86. Hartong R, Wang N, Kurokawa R, Lazar MA, Glass CK, Apriletti JW, Dillmann WH (1994) Delineation of three different thyroid hormone-response elements in promoter of rat sarcoplasmic reticulum Ca2+ ATPase gene. Demonstration that retinoid X receptor binds 5′ to thyroid hormone receptor in response element 1. J Biol Chem 269(17):13021–13029. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8175722

  87. Rohrer D, Dillmann WH (1988) Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J Biol Chem 263(15):6941–6944. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/2966798

  88. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH et al (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86(8):2966–2970. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=287041&tool=pmcentrez&rendertype=abstract

  89. Ojamaa K, Kenessey A, Klein I (2000) Thyroid hormone regulation of phospholamban phosphorylation in the rat heart. Endocrinology 141(6):2139–2144. doi:10.1210/endo.141.6.7514

    CAS  PubMed  Google Scholar 

  90. Kahaly GJ, Dillmann WH (2005) Thyroid hormone action in the heart. Endocr Rev 26(5):704–728. doi:10.1210/er.2003-0033

    Article  CAS  PubMed  Google Scholar 

  91. Arai M, Otsu K, MacLennan DH, Alpert NR, Periasamy M (1991) Effect of thyroid hormone on the expression of mRNA encoding sarcoplasmic reticulum proteins. Circ Res 69(2):266–276. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1830516

  92. Hojo Y, Ikeda U, Tsuruya Y, Ebata H, Murata M, Okada K et al (1997) Thyroid hormone stimulates Na(+)-Ca2+ exchanger expression in rat cardiac myocytes. J Cardiovasc Pharmacol 29(1):75–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9007674

  93. Reed TD, Babu GJ, Ji Y, Zilberman A, Ver Heyen M, Wuytack F, Periasamy M (2000) The expression of SR calcium transport ATPase and the Na(+)/Ca(2+) exchanger are antithetically regulated during mouse cardiac development and in hypo/hyperthyroidism. J Mol Cell Cardiol 32(3):453–464. doi:10.1006/jmcc.1999.1095

    Article  CAS  PubMed  Google Scholar 

  94. Bahouth SW (1991) Thyroid hormones transcriptionally regulate the beta 1-adrenergic receptor gene in cultured ventricular myocytes. J Biol Chem 266(24):15863–15869. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1651924

  95. Das DK, Bandyopadhyay D, Bandyopadhyay S, Neogi A (1984) Thyroid hormone regulation of beta-adrenergic receptors and catecholamine sensitive adenylate cyclase in foetal heart. Acta Endocrinol 106(4):569–576. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6089483

  96. Rutherford JD, Vatner SF, Braunwald E (1979) Adrenergic control of myocardial contractility in conscious hyperthyroid dogs. Am J Physiol Heart Circ Physiol 237(5):H590–H596

    CAS  Google Scholar 

  97. Huang F, He H, Gick G (1994) Thyroid hormone regulation of Na, K-ATPase alpha 2 gene expression in cardiac myocytes. Cell Mol Biol Res 40(1):41–52. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7804325

  98. Liu B, Huang F, Gick G (1993) Regulation of Na, K-ATPase beta 1 mRNA content by thyroid hormone in neonatal rat cardiac myocytes. Cell Mol Biol Res 39(3):221–229. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8293039

  99. Shimoni Y, Fiset C, Clark RB, Dixon JE, McKinnon D, Giles WR (1997) Thyroid hormone regulates postnatal expression of transient K+ channel isoforms in rat ventricle. J Physiol 500(Pt 1):65–73. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9097933

  100. Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, Cokkinos DV (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 42(10):718–724. doi:10.1055/s-0030-1255035

    Article  CAS  PubMed  Google Scholar 

  101. Mousa SA, Bergh JJ, Dier E, Rebbaa A, O’Connor LJ, Yalcin M et al (2008) Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2):183–190. doi:10.1007/s10456-007-9088-7

    Article  CAS  PubMed  Google Scholar 

  102. Davis PJ, Lin H-Y, Tang H-Y, Davis FB, Mousa SA (2013) Adjunctive input to the nuclear thyroid hormone receptor from the cell surface receptor for the hormone. Thyroid 23(12):1503–1509. doi:10.1089/thy.2013.0280

    Article  CAS  PubMed  Google Scholar 

  103. Davis FB, Mousa SA, O’Connor L, Mohamed S, Lin H-Y, Cao HJ, Davis PJ (2004) Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 94(11):1500–1506. doi:10.1161/01.RES.0000130784.90237.4a

    Article  CAS  PubMed  Google Scholar 

  104. Cohen K, Flint N, Shalev S, Erez D, Baharal T, Davis PJ et al (2014) Thyroid hormone regulates adhesion, migration and matrix metalloproteinase 9 activity via αvβ3 integrin in myeloma cells. Oncotarget. Impact J. Retrieved from http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=2205&path%5B%5D=3560

  105. Shih A, Lin H-Y, Davis FB, Davis PJ (2001) Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry 40(9):2870–2878. doi:10.1021/bi001978b

    Article  CAS  PubMed  Google Scholar 

  106. Lin H-Y, Sun M, Tang H-Y, Lin C, Luidens MK, Mousa SA et al (2009) l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell physiol 296(5):C980–C991. doi:10.1152/ajpcell.00305.2008

    Article  CAS  PubMed  Google Scholar 

  107. Kalyanaraman H, Schwappacher R, Joshua J, Zhuang S, Scott BT, Klos M et al (2014) Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci Signal 7(326):ra48. doi:10.1126/scisignal.2004911

    Article  PubMed  CAS  Google Scholar 

  108. Rudinger A, Mylotte KM, Davis PJ, Davis FB, Blas SD (1984) Rabbit myocardial membrane Ca2+-adenosine triphosphatase activity: stimulation in vitro by thyroid hormone. Arch Biochem Biophys 229(1):379–385. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/6230996

  109. Lomax RB, Cobbold PH, Allshire AP, Cuthbertson KS, Robertson WR (1991) Tri-iodothyronine increases intra-cellular calcium levels in single rat myocytes. J Mol Endocrinol 7(1):77–79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1654054

  110. Zinman T, Shneyvays V, Tribulova N, Manoach M, Shainberg A (2006) Acute, nongenomic effect of thyroid hormones in preventing calcium overload in newborn rat cardiocytes. J Cell Physiol 207(1):220–231. doi:10.1002/jcp.20562

    Article  CAS  PubMed  Google Scholar 

  111. Huang CJ, Geller HM, Green WL, Craelius W (1999) Acute effects of thyroid hormone analogs on sodium currents in neonatal rat myocytes. J Mol Cell Cardiol 31(4):881–893. doi:10.1006/jmcc.1998.0930

    Article  CAS  PubMed  Google Scholar 

  112. Harris DR, Green WL, Craelius W (1991) Acute thyroid hormone promotes slow inactivation of sodium current in neonatal cardiac myocytes. Biochim Biophys Acta 1095(2):175–181. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1657196

  113. Dudley SC, Baumgarten CM (1993) Bursting of cardiac sodium channels after acute exposure to 3,5,3′-triiodo-l-thyronine. Circ Res 73(2):301–313. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8392449

  114. Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA (1990) Differential regulation of Na, K-ATPase alpha 1, alpha 2, and beta subunit mRNA and protein levels by thyroid hormone. J Biol Chem 265(0021-9258 SB - IM):14308–14314

    CAS  PubMed  Google Scholar 

  115. Incerpi S, Scapin S, D’Arezzo S, Spagnuolo S, Leoni S (2005) Short-term effects of thyroid hormone in prenatal development and cell differentiation. Steroids 70(5–7):434–443. doi:10.1016/j.steroids.2005.02.009

    Article  CAS  PubMed  Google Scholar 

  116. Sakaguchi Y, Cui G, Sen L (1996) Acute effects of thyroid hormone on inward rectifier potassium channel currents in guinea pig ventricular myocytes. Endocrinology 137(11):4744–4751. doi:10.1210/endo.137.11.8895342

    CAS  PubMed  Google Scholar 

  117. Schmidt BMW, Martin N, Georgens AC, Tillmann H-C, Feuring M, Christ M, Wehling M (2002) Nongenomic cardiovascular effects of triiodothyronine in euthyroid male volunteers. J Clin Endocrinol Metab 87(4):1681–1686. doi:10.1210/jcem.87.4.8410

    Article  CAS  PubMed  Google Scholar 

  118. Lanni A, Moreno M, Lombardi A, de Lange P, Silvestri E, Ragni M et al (2005) 3,5-diiodo-l-thyronine powerfully reduces adiposity in rats by increasing the burning of fats. FASEB J 19(11):1552–1554. doi:10.1096/fj.05-3977fje

    CAS  PubMed  Google Scholar 

  119. Mollica MP, Lionetti L, Moreno M, Lombardi A, De Lange P, Antonelli A et al (2009) 3,5-diiodo-l-thyronine, by modulating mitochondrial functions, reverses hepatic fat accumulation in rats fed a high-fat diet. J Hepatol 51(2):363–370. doi:10.1016/j.jhep.2009.03.023

    Article  CAS  PubMed  Google Scholar 

  120. Padron AS, Neto RAL, Pantaleão TU, de Souza dos Santos MC, Araujo RL, de Andrade BM et al (2014) Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J Endocrinol 221(3):415–427. doi:10.1530/JOE-13-0502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Horst C, Harneit A, Seitz HJ, Rokos H (1995) 3,5-Di-iodo-l-thyronine suppresses TSH in rats in vivo and in rat pituitary fragments in vitro. J Endocrinol 145(2):291–297. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7616162

  122. Lanni A, Moreno M, Cioffi M, Goglia F (1993) Effect of 3,3′-di-iodothyronine and 3,5-di-iodothyronine on rat liver mitochondria. J Endocrinol 136(1):59–64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8381457

  123. Lanni A, Moreno M, Lombardi A, Goglia F (1996) Calorigenic effect of diiodothyronines in the rat. J Physiol 494(Pt 3):831–837. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1160681&tool=pmcentrez&rendertype=abstract

  124. Lombardi A, Lanni A, Moreno M, Brand MD, Goglia F (1998) Effect of 3,5-di-iodo-l-thyronine on the mitochondrial energy-transduction apparatus. Biochem J 330(Pt 1):521–526. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1219168&tool=pmcentrez&rendertype=abstract

  125. Lombardi A, de Lange P, Silvestri E, Busiello RA, Lanni A, Goglia F, Moreno M (2009) 3,5-Diiodo-l-thyronine rapidly enhances mitochondrial fatty acid oxidation rate and thermogenesis in rat skeletal muscle: AMP-activated protein kinase involvement. Am J Physiol Endocrinol Metab 296(3):E497–E502. doi:10.1152/ajpendo.90642.2008

    Article  CAS  PubMed  Google Scholar 

  126. Lombardi A, De Matteis R, Moreno M, Napolitano L, Busiello RA, Senese R et al (2012) Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36. Am J Physiol Endocrinol Metab 303(10):E1222–E1233. doi:10.1152/ajpendo.00037.2012

    Article  CAS  PubMed  Google Scholar 

  127. Goglia F (2015) The effects of 3,5-diiodothyronine on energy balance. Front Physiol 5:528. doi:10.3389/fphys.2014.00528

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mangiullo R, Gnoni A, Damiano F, Siculella L, Zanotti F, Papa S, Gnoni GV (2010) 3,5-diiodo-l-thyronine upregulates rat-liver mitochondrial F(o)F(1)-ATP synthase by GA-binding protein/nuclear respiratory factor-2. Biochim Biophys Acta 1797(2):233–240. doi:10.1016/j.bbabio.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  129. Jonas W, Lietzow J, Wohlgemuth F, Hoefig CS, Wiedmer P, Schweizer U et al (2015) 3,5-Diiodo-l-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1):389–399. doi:10.1210/en.2014-1604

    Article  PubMed  CAS  Google Scholar 

  130. Antonelli A, Fallahi P, Ferrari SM, Di Domenicantonio A, Moreno M, Lanni A, Goglia F 3,5-diiodo-l-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J Biol Regul Homeost Agents 25(4):655–660. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22217997

  131. Cheng SY, Ransom SC, McPhie P, Bhat MK, Mixson AJ, Wintraub BD (1994) Analysis of the binding of 3,3′,5-triiodo-l-thyronine and its analogues to mutant human beta 1 thyroid hormone receptors: a model of the hormone binding site. Biochemistry 33(14):4319–4326. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8155649

  132. Mendoza A, Navarrete-Ramírez P, Hernández-Puga G, Villalobos P, Holzer G, Renaud JP et al (2013) 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1. Endocrinology 154(8):2948–2958. doi:10.1210/en.2013-1030

    Article  CAS  PubMed  Google Scholar 

  133. Frascarelli S, Ghelardoni S, Chiellini G, Vargiu R, Ronca-Testoni S, Scanlan TS et al (2008) Cardiac effects of trace amines: pharmacological characterization of trace amine-associated receptors. Eur J Pharmacol 587(1–3):231–236. doi:10.1016/j.ejphar.2008.03.055

    Article  CAS  PubMed  Google Scholar 

  134. Ghelardoni S, Suffredini S, Frascarelli S, Brogioni S, Chiellini G, Ronca-Testoni S et al (2009) Modulation of cardiac ionic homeostasis by 3-iodothyronamine. J Cell Mol Med 13(9B):3082–3090. doi:10.1111/j.1582-4934.2009.00728.x

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dinter J, Mühlhaus J, Wienchol CL, Yi C-X, Nürnberg D, Morin S et al (2015) Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5. PLoS One 10(2):e0117774. doi:10.1371/journal.pone.0117774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Dinter J, Mühlhaus J, Jacobi SF, Wienchol CL, Cöster M, Meister J et al (2015) 3-iodothyronamine differentially modulates α-2A-adrenergic receptor-mediated signaling. J Mol Endocrinol 54(3):205–216. doi:10.1530/JME-15-0003

    Article  CAS  PubMed  Google Scholar 

  137. Frascarelli S, Ghelardoni S, Chiellini G, Galli E, Ronca F, Scanlan TS, Zucchi R (2011) Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 25(4):307–313. doi:10.1007/s10557-011-6320-x

    Article  CAS  PubMed  Google Scholar 

  138. Venditti P, Napolitano G, Di Stefano L, Chiellini G, Zucchi R, Scanlan TS, Di Meo S (2011) Effects of the thyroid hormone derivatives 3-iodothyronamine and thyronamine on rat liver oxidative capacity. Mol Cell Endocrinol 341(1–2):55–62. doi:10.1016/j.mce.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  139. Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S (2012) Mitochondrial F(0)F(1)-ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Br J Pharmacol 166(8):2331–2347. doi:10.1111/j.1476-5381.2012.01958.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hackenmueller SA, Scanlan TS (2012) Identification and quantification of 3-iodothyronamine metabolites in mouse serum using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1256:89–97. doi:10.1016/j.chroma.2012.07.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J (2015) 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 172(13):3426–3433. doi:10.1111/bph.13131

    Article  CAS  PubMed  Google Scholar 

  142. Biondi B, Palmieri EA, Lombardi G, Fazio S (2002) Effects of thyroid hormone on cardiac function: the relative importance of heart rate, loading conditions, and myocardial contractility in the regulation of cardiac performance in human hyperthyroidism. J Clin Endocrinol Metab 87(3):968–974. doi:10.1210/jcem.87.3.8302

    Article  CAS  PubMed  Google Scholar 

  143. Klein I, Hong C (1986) Effects of thyroid hormone on cardiac size and myosin content of the heterotopically transplanted rat heart. J Clin Investig 77(5):1694–1698. doi:10.1172/JCI112488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Dillmann WH (2002) Cellular action of thyroid hormone on the heart. Thyroid 12(6):447–452. doi:10.1089/105072502760143809

    Article  CAS  PubMed  Google Scholar 

  145. Pachucki J, Burmeister LA, Larsen PR (1999) Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. Circ Res 85(6):498–503

    Article  CAS  PubMed  Google Scholar 

  146. Grais IM, Sowers JR (2014) Thyroid and the heart. Am J Med 127(8):691–698. doi:10.1016/j.amjmed.2014.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Park KW, Dai HB, Ojamaa K, Lowenstein E, Klein I, Sellke FW (1997) The direct vasomotor effect of thyroid hormones on rat skeletal muscle resistance arteries. Anesth Analg 85(4):734–738. doi:10.1097/00000539-199710000-00005

    CAS  PubMed  Google Scholar 

  148. Carrillo-Sepúlveda MA, Ceravolo GS, Fortes ZB, Carvalho MH, Tostes RC, Laurindo FR et al (2010) Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes. Cardiovasc Res 85(3):560–570. doi:10.1093/cvr/cvp304

    Article  PubMed  CAS  Google Scholar 

  149. Bluhm WF, Meyer M, Sayen MR, Swanson EA, Dillmann WH (1999) Overexpression of sarcoplasmic reticulum Ca(2+)-ATPase improves cardiac contractile function in hypothyroid mice. Cardiovasc Res 43(2):382–388

    Article  CAS  PubMed  Google Scholar 

  150. Fommei E, Iervasi G (2002) The role of thyroid hormone in blood pressure homeostasis: evidence from short-term hypothyroidism in humans. J Clin Endocrinol Metab 87(5):1996–2000. doi:10.1210/jc.87.5.1996

    Article  CAS  PubMed  Google Scholar 

  151. Dernellis J, Panaretou M (2002) Effects of thyroid replacement therapy on arterial blood pressure in patients with hypertension and hypothyroidism. Am Heart J 143:718–724

    Article  CAS  PubMed  Google Scholar 

  152. Ladenson PW, Sherman SI, Baughman KL, Ray PE, Feldman AM (1992) Reversible alterations in myocardial gene expression in a young man with dilated cardiomyopathy and hypothyroidism. Proc Natl Acad Sci USA 89(12):5251–5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hak AE, Pols HA, Visser TJ, Drexhage HA, Hofman A, Witteman JC (2000) Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann Intern Med 132(4):270–278. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10681281

  154. Liu Y, Redetzke RA, Said S, Pottala JV, de Escobar GM, Gerdes AM (2009) Serum thyroid hormone levels may not accurately reflect thyroid tissue levels and cardiac function in mild hypothyroidism. Am J Physiol Heart Circ Physiol 294(5):H2137–H2143. doi:10.1152/ajpheart.01379.2007

    Article  CAS  Google Scholar 

  155. Saba A, Donzelli R, Colligiani D, Raffaelli A, Nannipieri M, Kusmic C et al (2014) Quantification of thyroxine and 3,5,3′-triiodo-thyronine in human and animal hearts by a novel liquid chromatography–tandem mass spectrometry method. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et métabolisme 46(9):628–634. doi:10.1055/s-0034-1368717

    Article  CAS  PubMed  Google Scholar 

  156. Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M et al (2003) A strong prognostic predictor of death in patients with heart disease. Cardiovasc Res. doi:10.1161/01.CIR.0000048124.64204.3F

    Google Scholar 

  157. Kinugawa K, Minobe WA, Wood WM, Ridgway EC, Baxter JD, Ribeiro RC et al (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103(8):1089–1094. doi:10.1161/01.CIR.103.8.1089

    Article  CAS  PubMed  Google Scholar 

  158. Belke DD, Gloss B, Swanson EA, Dillmann WH (2007) Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and-beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology 148(6):2870–2877. doi:10.1210/en.2007-0009

    Article  CAS  PubMed  Google Scholar 

  159. Sabatino L, Iervasi G, Pingitore A (2014) Thyroid hormone and heart failure: from myocardial protection to systemic regulation. Expert Rev Cardiovasc Ther 12(10):1227–1236. doi:10.1586/14779072.2014.957674

    Article  CAS  PubMed  Google Scholar 

  160. Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A et al (2011) Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology 152(2):669–679. doi:10.1210/en.2010-0431

    Article  CAS  PubMed  Google Scholar 

  161. Lymvaios I, Mourouzis I, Cokkinos DV, Dimopoulos MA, Toumanidis ST, Pantos C (2011) Thyroid hormone and recovery of cardiac function in patients with acute myocardial infarction: a strong association? Eur J Endocrinol 165(1):107–114. doi:10.1530/EJE-11-0062

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Zucchi.

Ethics declarations

Conflict of interest

Authors Alice Accorroni, Federica Saponaro and Riccardo Zucchi have no conflicts of interest or financial ties to disclose.

Human and animal rights

This article is a review of the literature, and therefore, it does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Alice Accorroni and Federica Saponaro have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accorroni, A., Saponaro, F. & Zucchi, R. Tissue thyroid hormones and thyronamines. Heart Fail Rev 21, 373–390 (2016). https://doi.org/10.1007/s10741-016-9553-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-016-9553-8

Keywords

Navigation