Skip to main content
Log in

Myocardial interstitial remodelling in non-ischaemic dilated cardiomyopathy: insights from cardiovascular magnetic resonance

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Myocardial remodelling involves not only the myocytes, but also non-myocyte cells and the extracellular matrix, which constitutes around 6 % of the normal heart and includes fluid, collagen and glycoproteins. In non-ischaemic dilated cardiomyopathy (DCM), the cardiac interstitium increases as a result of diffuse interstitial (microscopic) fibrosis, post-necrotic replacement (macroscopic) fibrosis or myocardial oedema. The activation of the renin–angiotensin–aldosterone system is a major determinant of fibroblasts activation and collagen deposition, with the transforming growth factor β as the downstream signal mediator. Endomyocardial biopsy still represents the current reference method for interstitial and replacement myocardial fibrosis assessment, but cardiovascular magnetic resonance (CMR) allows in vivo detection of macroscopic fibrosis with post-contrast late enhancement imaging. Moreover, recent pre- and post-contrast T1 mapping techniques provide a quantitative estimation of myocardial interstitial remodelling, with potential diagnostic and prognostic clinical utility. Here, we review the pathophysiological mechanisms of myocardial interstitial remodelling in DCM, its non-invasive characterization with biomarkers and with CMR, as well as the most recent studies about their clinical utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CMR:

Cardiovascular magnetic resonance

DCM:

Dilated cardiomyopathy

ECV:

Extracellular volume

LGE:

Late gadolinium enhancement

LV:

Left ventricular

MMP:

Matrix metalloproteinase

MOLLI:

Modified look-locker inversion recovery

NT-proBNP:

N-terminal fragment of the pro-brain natriuretic peptide

ShMOLLI:

Shortened modified look-locker inversion recovery

TGF-β:

Transforming growth factor beta

TNF-α:

Tumour necrosis factor alpha

References

  1. Felker GM, Thompson RE, Hare JM et al (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084

    Article  CAS  PubMed  Google Scholar 

  2. Merlo M, Pyxaras SA, Pinamonti B et al (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57:1468–1476. doi:10.1016/j.jacc.2010.11.030

    Article  PubMed  Google Scholar 

  3. Steimle AE, Stevenson LW, Fonarow GC et al (1994) Prediction of improvement in recent onset cardiomyopathy after referral for heart transplantation. J Am Coll Cardiol 23:553–559

    Article  CAS  PubMed  Google Scholar 

  4. Wilcox JE, Fonarow GC, Yancy CW et al (2012) Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. Am Heart J 163(49–56):e2. doi:10.1016/j.ahj.2011.10.001

    PubMed  Google Scholar 

  5. McMurray JJV, Adamopoulos S, Anker SD et al (2012) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart. Eur J Heart Fail 14:803–869. doi:10.1093/eurjhf/hfs105

    Article  CAS  PubMed  Google Scholar 

  6. Goldberger JJ, Buxton AE, Cain M et al (2011) Risk stratification for arrhythmic sudden cardiac death: identifying the roadblocks. Circulation 123:2423–2430. doi:10.1161/CIRCULATIONAHA.110.959734

    Article  PubMed  Google Scholar 

  7. Swynghedauw B (2006) Phenotypic plasticity of adult myocardium: molecular mechanisms. J Exp Biol 209:2320–2327. doi:10.1242/jeb.02084

    Article  CAS  PubMed  Google Scholar 

  8. Unverferth DV, Baker PB, Swift SE et al (1986) Extent of myocardial fibrosis and cellular hypertrophy in dilated cardiomyopathy. Am J Cardiol 57:816–820

    Article  CAS  PubMed  Google Scholar 

  9. Weber KT, Brilla CG (1991) Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865

    Article  CAS  PubMed  Google Scholar 

  10. Beltrami CA, Finato N, Rocco M et al (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27:291–305

    Article  CAS  PubMed  Google Scholar 

  11. Neglia D, Parodi O, Gallopin M et al (1995) Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure. A quantitative assessment by positron emission tomography. Circulation 92:796–804

    Article  CAS  PubMed  Google Scholar 

  12. Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193

    Article  PubMed  Google Scholar 

  13. Lionetti V, Guiducci L, Simioniuc A et al (2007) Mismatch between uniform increase in cardiac glucose uptake and regional contractile dysfunction in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 293:H2747–H2756. doi:10.1152/ajpheart.00592.2007

    Article  CAS  PubMed  Google Scholar 

  14. Passino C, Barison A, Vergaro G et al (2015) Markers of fibrosis, inflammation, and remodeling pathways in heart failure. Clin Chim Acta 443:29–38. doi:10.1016/j.cca.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  15. Emdin M, Barison A, Passino C, Vergaro G (2013) Biomarkers in heart failure: an update. G Ital Cardiol (Rome) 14:809–816. doi:10.1714/1371.15237

    Google Scholar 

  16. Libby P, Lee RT (2000) Matrix matters. Circulation 102:1874–1876

    Article  CAS  PubMed  Google Scholar 

  17. De Jong S, van Veen TAB, de Bakker JMT et al (2011) Biomarkers of myocardial fibrosis. J Cardiovasc Pharmacol 57:522–535. doi:10.1097/FJC.0b013e31821823d9

    Article  PubMed  CAS  Google Scholar 

  18. Weber KT, Janicki JS, Shroff SG et al (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62:757–765

    Article  CAS  PubMed  Google Scholar 

  19. López B, González A, Varo N et al (2001) Biochemical assessment of myocardial fibrosis in hypertensive heart disease. Hypertension 38:1222–1226

    Article  PubMed  Google Scholar 

  20. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573. doi:10.1016/j.cardiores.2005.12.002

    Article  CAS  PubMed  Google Scholar 

  21. Risteli J, Risteli L (1995) Analysing connective tissue metabolites in human serum. Biochemical, physiological and methodological aspects. J Hepatol 22:77–81

    Article  CAS  PubMed  Google Scholar 

  22. Pauschinger M, Knopf D, Petschauer S et al (1999) Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation 99:2750–2756

    Article  CAS  PubMed  Google Scholar 

  23. Weber KT, Sun Y, Katwa LC et al (1995) Connective tissue and repair in the heart. Potential regulatory mechanisms. Ann N Y Acad Sci 752:286–299

    Article  CAS  PubMed  Google Scholar 

  24. Mewton N, Liu CY, Croisille P et al (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903. doi:10.1016/j.jacc.2010.11.013

    Article  PubMed  Google Scholar 

  25. Díez J, Querejeta R, López B et al (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517

    Article  PubMed  CAS  Google Scholar 

  26. Bernaba BN, Chan JB, Lai CK, Fishbein MC (2010) Pathology of late-onset anthracycline cardiomyopathy. Cardiovasc Pathol Off J Soc Cardiovasc Pathol 19:308–311

    Article  CAS  Google Scholar 

  27. Meune C, Vignaux O, Kahan A, Allanore Y (2010) Heart involvement in systemic sclerosis: evolving concept and diagnostic methodologies. Arch Cardiovasc Dis 103:46–52

    Article  PubMed  Google Scholar 

  28. Garzoni LR, Adesse D, Soares MJ et al (2008) Fibrosis and hypertrophy induced by Trypanosoma cruzi in a three-dimensional cardiomyocyte-culture system. J Infect Dis 197:906–915

    Article  PubMed  Google Scholar 

  29. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210. doi:10.1002/path.2277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Porter KE, Turner NA (2009) Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 123:255–278. doi:10.1016/j.pharmthera.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  31. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65:40–51. doi:10.1016/j.cardiores.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  32. Seeland U, Schäffer A, Selejan S et al (2009) Effects of AT1- and beta-adrenergic receptor antagonists on TGF-beta1-induced fibrosis in transgenic mice. Eur J Clin Invest 39:851–859. doi:10.1111/j.1365-2362.2009.02183.x

    Article  CAS  PubMed  Google Scholar 

  33. Brilla CG (2000) Renin-angiotensin-aldosterone system and myocardial fibrosis. Cardiovasc Res 47:1–3

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe T, Barker TA, Berk BC (2005) Angiotensin II and the endothelium: diverse signals and effects. Hypertension 45:163–169. doi:10.1161/01.HYP.0000153321.13792.b9

    Article  CAS  PubMed  Google Scholar 

  35. Parodi O, De Maria R, Oltrona L et al (1993) Myocardial blood flow distribution in patients with ischemic heart disease or dilated cardiomyopathy undergoing heart transplantation. Circulation 88:509–522

    Article  CAS  PubMed  Google Scholar 

  36. Tsagalou EP, Anastasiou-Nana M, Agapitos E et al (2008) Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J Am Coll Cardiol 52:1391–1398. doi:10.1016/j.jacc.2008.05.064

    Article  PubMed  Google Scholar 

  37. Masci PG, Marinelli M, Positano V, Aquaro GD, Landini L, Piacenti M, Pingitore A, Lombardi MND (2009) Regional matching between the extent of discoordinate contraction and myocardial metabolic activity in patients with dilated cardiomyopathy and left bundle branch block. Eur Heart J 30:746

    Google Scholar 

  38. Cicoira M, Rossi A, Bonapace S et al (2004) Independent and additional prognostic value of aminoterminal propeptide of type III procollagen circulating levels in patients with chronic heart failure. J Card Fail 10:403–411

    Article  CAS  PubMed  Google Scholar 

  39. Zannad F, Alla F, Dousset B et al (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales investigators. Circulation 102:2700–2706

    Article  CAS  PubMed  Google Scholar 

  40. Lijnen PJ, Maharani T, Finahari N, Prihadi JS (2012) Serum collagen markers and heart failure. Cardiovasc Hematol Disord Drug Targets 12:51–55

    Article  CAS  PubMed  Google Scholar 

  41. Kitahara T, Takeishi Y, Arimoto T et al (2007) Serum carboxy-terminal telopeptide of type I collagen (ICTP) predicts cardiac events in chronic heart failure patients with preserved left ventricular systolic function. Circ J 71:929–935

    Article  CAS  PubMed  Google Scholar 

  42. Klappacher G, Franzen P, Haab D et al (1995) Measuring extracellular matrix turnover in the serum of patients with idiopathic or ischemic dilated cardiomyopathy and impact on diagnosis and prognosis. Am J Cardiol 75:913–918

    Article  CAS  PubMed  Google Scholar 

  43. Querejeta R, López B, González A et al (2004) Increased collagen type I synthesis in patients with heart failure of hypertensive origin: relation to myocardial fibrosis. Circulation 110:1263–1268. doi:10.1161/01.CIR.0000140973.60992.9A

    Article  CAS  PubMed  Google Scholar 

  44. Gullestad L, Ueland T, Vinge LE et al (2012) Inflammatory cytokines in heart failure: mediators and markers. Cardiology 122:23–35. doi:10.1159/000338166

    Article  CAS  PubMed  Google Scholar 

  45. Lin Y-H, Lin L-Y, Wu Y-W et al (2009) The relationship between serum galectin-3 and serum markers of cardiac extracellular matrix turnover in heart failure patients. Clin Chim Acta 409:96–99. doi:10.1016/j.cca.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  46. Gopal DM, Kommineni M, Ayalon N et al (2012) Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc 1:e000760. doi:10.1161/JAHA.112.000760

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Tang WHW, Shrestha K, Shao Z et al (2011) Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol 108:385–390. doi:10.1016/j.amjcard.2011.03.056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. De Boer RA, Lok DJA, Jaarsma T et al (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68. doi:10.3109/07853890.2010.538080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Lok DJ, Lok SI, Bruggink-André de la Porte PW et al (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clin Res Cardiol 102:103–110. doi:10.1007/s00392-012-0500-y

    Article  CAS  PubMed  Google Scholar 

  50. Bayes-Genis A, de Antonio M, Vila J et al (2013) Head-to-head comparison of two myocardial fibrosis biomarkers for long-term heart failure risk stratification: ST2 vs. Galectin-3. J Am Coll Cardiol. doi:10.1016/j.jacc.2013.07.087

    PubMed  Google Scholar 

  51. Van der Velde AR, Gullestad L, Ueland T et al (2013) Prognostic value of changes in galectin-3 levels over time in patients with heart failure: data from CORONA and COACH. Circ Heart Fail 6:219–226. doi:10.1161/CIRCHEARTFAILURE.112.000129

    Article  PubMed  CAS  Google Scholar 

  52. Juillière Y, Barbier G, Feldmann L et al (1997) Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J 18:276–280

    Article  PubMed  Google Scholar 

  53. Gulati A, Ismail TF, Jabbour A et al (2013) The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation 128:1623–1633. doi:10.1161/CIRCULATIONAHA.113.002518

    Article  PubMed  Google Scholar 

  54. Shen WF, Tribouilloy C, Rey JL et al (1992) Prognostic significance of Doppler-derived left ventricular diastolic filling variables in dilated cardiomyopathy. Am Heart J 124:1524–1533

    Article  CAS  PubMed  Google Scholar 

  55. Rihal CS, Nishimura RA, Hatle LK et al (1994) Systolic and diastolic dysfunction in patients with clinical diagnosis of dilated cardiomyopathy. Relation to symptoms and prognosis. Circulation 90:2772–2779

    Article  CAS  PubMed  Google Scholar 

  56. Rossi A, Cicoira M, Zanolla L et al (2002) Determinants and prognostic value of left atrial volume in patients with dilated cardiomyopathy. J Am Coll Cardiol 40:1425

    Article  PubMed  Google Scholar 

  57. Gulati A, Ismail TF, Jabbour A et al (2013) Clinical utility and prognostic value of left atrial volume assessment by cardiovascular magnetic resonance in non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 15:660–670. doi:10.1093/eurjhf/hft019

    Article  CAS  PubMed  Google Scholar 

  58. Ridgway JP (2010) Cardiovascular magnetic resonance physics for clinicians: part I. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 12:71. doi:10.1186/1532-429X-12-71

    Google Scholar 

  59. Kellman P, Wilson JR, Xue H et al (2012) Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 14:63. doi:10.1186/1532-429X-14-63

    Article  PubMed Central  PubMed  Google Scholar 

  60. Messroghli DR, Plein S, Higgins DM et al (2006) Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution—reproducibility study. Radiology 238:1004–1012. doi:10.1148/radiol.2382041903

    Article  PubMed  Google Scholar 

  61. Perea RJ, Ortiz-Perez JT, Sole M et al (2014) T1 mapping: characterisation of myocardial interstitial space. Insights Imaging 6:189–202. doi:10.1007/s13244-014-0366-9

    Article  PubMed Central  PubMed  Google Scholar 

  62. Goldfarb JW, Arnold S, Han J (2007) Recent myocardial infarction: assessment with unenhanced T1-weighted MR imaging. Radiology 245:245–250. doi:10.1148/radiol.2451061590

    Article  PubMed  Google Scholar 

  63. Ferreira VM, Piechnik SK, Dall’Armellina E et al (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42. doi:10.1186/1532-429X-14-42

    Article  PubMed Central  PubMed  Google Scholar 

  64. Dall’Armellina E, Ferreira VM, Kharbanda RK et al (2013) Diagnostic value of pre-contrast T1 mapping in acute and chronic myocardial infarction. JACC Cardiovasc Imaging 6:739–742. doi:10.1016/j.jcmg.2012.11.020

    Article  PubMed  Google Scholar 

  65. Germain P, El Ghannudi S, Jeung M-Y et al (2014) Native T1 mapping of the heart—a pictorial review. Clin Med Insights Cardiol 8:1–11. doi:10.4137/CMC.S19005

    Article  PubMed Central  PubMed  Google Scholar 

  66. Puntmann VO, Voigt T, Chen Z et al (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6:475–484. doi:10.1016/j.jcmg.2012.08.019

    Article  PubMed  Google Scholar 

  67. Bull S, White SK, Piechnik SK et al (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99:932–937. doi:10.1136/heartjnl-2012-303052

    Article  PubMed Central  PubMed  Google Scholar 

  68. Karamitsos T, Banypersad SM, Sado D et al (2012) Pre-contrast ShMOLLI T1 mapping in cardiac AL amyloidosis. J Cardiovasc Magn Reson 14:O76. doi:10.1186/1532-429X-14-S1-O76

    Article  PubMed Central  Google Scholar 

  69. Sado DM, White SK, Piechnik SK et al (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6:392–398. doi:10.1161/CIRCIMAGING.112.000070

    Article  PubMed  Google Scholar 

  70. Feng Y, He T, Carpenter J-P et al (2013) In vivo comparison of myocardial T1 with T2 and T2* in thalassaemia major. J Magn Reson Imaging 38:588–593. doi:10.1002/jmri.24010

    Article  PubMed  Google Scholar 

  71. Sado DM, Maestrini V, Piechnik SK et al (2014) Noncontrast myocardial T1 mapping using cardiovascular magnetic resonance for iron overload. J Magn Reson Imaging. doi:10.1002/jmri.24727

    PubMed  Google Scholar 

  72. Dass S, Suttie JJ, Piechnik SK et al (2012) Myocardial tissue characterization using magnetic resonance noncontrast t1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 5:726–733. doi:10.1161/CIRCIMAGING.112.976738

    Article  PubMed  Google Scholar 

  73. Puntmann VO, Arroyo Ucar E, Hinojar Baydes R et al (2014) Aortic stiffness and interstitial myocardial fibrosis by native T1 are independently associated with left ventricular remodeling in patients with dilated cardiomyopathy. Hypertension 64:762–768. doi:10.1161/HYPERTENSIONAHA.114.03928

    Article  CAS  PubMed  Google Scholar 

  74. Francone M, Carbone I, Agati L et al (2011) Utility of T2-weighted short-tau inversion recovery (STIR) sequences in cardiac MRI: an overview of clinical applications in ischaemic and non-ischaemic heart disease. Radiol Med 116:32–46. doi:10.1007/s11547-010-0594-0

    Article  CAS  PubMed  Google Scholar 

  75. Mirakhur A, Anca N, Mikami Y, Merchant N (2013) T2-weighted imaging of the heart—a pictorial review. Eur J Radiol 82:1755–1762. doi:10.1016/j.ejrad.2013.06.005

    Article  PubMed  Google Scholar 

  76. Abdel-Aty H, Simonetti O, Friedrich MG (2007) T2-weighted cardiovascular magnetic resonance imaging. J Magn Reson Imaging 26:452–459. doi:10.1002/jmri.21028

    Article  PubMed  Google Scholar 

  77. Ferreira VM, Piechnik SK, Robson MD et al (2014) Myocardial tissue characterization by magnetic resonance imaging: novel applications of T1 and T2 mapping. J Thorac Imaging 29:147–154. doi:10.1097/RTI.0000000000000077

    Article  PubMed Central  PubMed  Google Scholar 

  78. Nishii T, Kono AK, Shigeru M et al (2014) Cardiovascular magnetic resonance T2 mapping can detect myocardial edema in idiopathic dilated cardiomyopathy. Int J Cardiovasc Imaging 30(Suppl 1):65–72. doi:10.1007/s10554-014-0414-z

    Article  PubMed  Google Scholar 

  79. Kim RJ, Chen EL, Lima JA, Judd RM (1996) Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 94:3318–3326

    Article  CAS  PubMed  Google Scholar 

  80. Vöhringer M, Mahrholdt H, Yilmaz A, Sechtem U (2007) Significance of late gadolinium enhancement in cardiovascular magnetic resonance imaging (CMR). Herz 32:129–137. doi:10.1007/s00059-007-2972-5

    Article  PubMed  Google Scholar 

  81. Vermes E, Carbone I, Friedrich MG, Merchant N (2012) Patterns of myocardial late enhancement: typical and atypical features. Arch Cardiovasc Dis 105:300–308. doi:10.1016/j.acvd.2011.12.006

    Article  PubMed  Google Scholar 

  82. McCrohon JA, Moon JCC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59. doi:10.1161/01.CIR.0000078641.19365.4C

    Article  CAS  PubMed  Google Scholar 

  83. Moreo A, Ambrosio G, De Chiara B et al (2009) Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2:437–443. doi:10.1161/CIRCIMAGING.108.838367

    Article  PubMed Central  PubMed  Google Scholar 

  84. Choi E-Y, Choi BW, Kim S-A et al (2009) Patterns of late gadolinium enhancement are associated with ventricular stiffness in patients with advanced non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 11:573–580. doi:10.1093/eurjhf/hfp050

    Article  PubMed  Google Scholar 

  85. Karaahmet T, Tigen K, Dundar C et al (2010) The effect of cardiac fibrosis on left ventricular remodeling, diastolic function, and N-terminal pro-B-type natriuretic peptide levels in patients with nonischemic dilated cardiomyopathy. Echocardiography 27:954–960. doi:10.1111/j.1540-8175.2010.01170.x

    Article  PubMed  Google Scholar 

  86. Nazarian S, Bluemke DA, Lardo AC et al (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112:2821–2825. doi:10.1161/CIRCULATIONAHA.105.549659

    Article  PubMed Central  PubMed  Google Scholar 

  87. Tachi M, Amano Y, Inui K et al (2015) Relationship of postcontrast myocardial T1 value and delayed enhancement to reduced cardiac function and serious arrhythmia in dilated cardiomyopathy with left ventricular ejection fraction less than 35. Acta Radiol. doi:10.1177/0284185115580840

    PubMed  Google Scholar 

  88. Perazzolo Marra M, De Lazzari M, Zorzi A et al (2014) Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm 11:856–863. doi:10.1016/j.hrthm.2014.01.014

    Article  PubMed  Google Scholar 

  89. Vergaro G, Del Franco A, Giannoni A et al (2015) Galectin-3 and myocardial fibrosis in nonischemic dilated cardiomyopathy. Int J Cardiol 184C:96–100. doi:10.1016/j.ijcard.2015.02.008

    Article  Google Scholar 

  90. Lopez-Andrès N, Rossignol P, Iraqi W et al (2012) Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. Eur J Heart Fail 14:74–81. doi:10.1093/eurjhf/hfr151

    Article  PubMed  CAS  Google Scholar 

  91. Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985. doi:10.1016/j.jacc.2006.07.049

    Article  PubMed  Google Scholar 

  92. Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51:2414–2421. doi:10.1016/j.jacc.2008.03.018

    Article  PubMed Central  PubMed  Google Scholar 

  93. Masci PG, Barison A, Aquaro GD et al (2012) Myocardial delayed enhancement in paucisymptomatic nonischemic dilated cardiomyopathy. Int J Cardiol 157:43–47. doi:10.1016/j.ijcard.2010.11.005

    Article  PubMed  Google Scholar 

  94. Shimizu I, Iguchi N, Watanabe H et al (2010) Delayed enhancement cardiovascular magnetic resonance as a novel technique to predict cardiac events in dilated cardiomyopathy patients. Int J Cardiol 142:224–229. doi:10.1016/j.ijcard.2008.12.189

    Article  PubMed  Google Scholar 

  95. Hombach V, Merkle N, Torzewski J et al (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30:2011–2018. doi:10.1093/eurheartj/ehp293

    Article  PubMed Central  PubMed  Google Scholar 

  96. Lehrke S, Lossnitzer D, Schöb M et al (2011) Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97:727–732. doi:10.1136/hrt.2010.205542

    Article  PubMed  Google Scholar 

  97. Leyva F, Taylor RJ, Foley PWX et al (2012) Left ventricular midwall fibrosis as a predictor of mortality and morbidity after cardiac resynchronization therapy in patients with nonischemic cardiomyopathy. J Am Coll Cardiol 60:1659–1667. doi:10.1016/j.jacc.2012.05.054

    Article  PubMed  Google Scholar 

  98. Gulati A, Jabbour A, Ismail TF et al (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309:896–908. doi:10.1001/jama.2013.1363

    Article  CAS  PubMed  Google Scholar 

  99. Barison A, Masci PG, Emdin M (2013) Fibrosis and mortality in patients with dilated cardiomyopathy. JAMA 309:2547. doi:10.1001/jama.2013.6453

    Article  CAS  PubMed  Google Scholar 

  100. Masci PG, Schuurman R, Andrea B et al (2013) Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study. Circ Cardiovasc Imaging 6:790–799. doi:10.1161/CIRCIMAGING.113.000438

    Article  PubMed  Google Scholar 

  101. Cleland JGF, Daubert J-C, Erdmann E et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352:1539–1549. doi:10.1056/NEJMoa050496

    Article  CAS  PubMed  Google Scholar 

  102. Bristow MR, Saxon LA, Boehmer J et al (2004) Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350:2140–2150. doi:10.1056/NEJMoa032423

    Article  CAS  PubMed  Google Scholar 

  103. Kadish A, Dyer A, Daubert JP et al (2004) Prophylactic defibrillator implantation in patients with nonischemic dilated cardiomyopathy. N Engl J Med 350:2151–2158. doi:10.1056/NEJMoa033088

    Article  CAS  PubMed  Google Scholar 

  104. Bardy GH, Lee KL, Mark DB et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352:225–237. doi:10.1056/NEJMoa043399

    Article  CAS  PubMed  Google Scholar 

  105. Kubanek M, Sramko M, Maluskova J et al (2013) Novel predictors of left ventricular reverse remodeling in individuals with recent-onset dilated cardiomyopathy. J Am Coll Cardiol 61:54–63. doi:10.1016/j.jacc.2012.07.072

    Article  PubMed  Google Scholar 

  106. Leong DP, Chakrabarty A, Shipp N et al (2012) Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in new-presentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography. Eur Heart J 33:640–648. doi:10.1093/eurheartj/ehr391

    Article  CAS  PubMed  Google Scholar 

  107. Yan AT, Shayne AJ, Brown KA et al (2006) Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality. Circulation 114:32–39. doi:10.1161/CIRCULATIONAHA.106.613414

    Article  PubMed  Google Scholar 

  108. Aquaro GD, Masci P, Formisano F et al (2010) Usefulness of delayed enhancement by magnetic resonance imaging in hypertrophic cardiomyopathy as a marker of disease and its severity. Am J Cardiol 105:392–397

    Article  PubMed  Google Scholar 

  109. Iles L, Pfluger H, Phrommintikul A et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580. doi:10.1016/j.jacc.2008.06.049

    Article  PubMed  Google Scholar 

  110. Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122:138–144. doi:10.1161/CIRCULATIONAHA.109.930636

    Article  PubMed  Google Scholar 

  111. White SK, Sado DM, Fontana M et al (2013) T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging 6:955–962. doi:10.1016/j.jcmg.2013.01.011

    Article  PubMed  Google Scholar 

  112. Kehr E, Sono M, Chugh SS, Jerosch-Herold M (2008) Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging 24:61–68. doi:10.1007/s10554-007-9223-y

    Article  PubMed  Google Scholar 

  113. Iles LM, Ellims AH, Llewellyn H et al (2015) Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging 16:14–22. doi:10.1093/ehjci/jeu182

    Article  PubMed  Google Scholar 

  114. Jerosch-Herold M, Sheridan DC, Kushner JD et al (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295:H1234–H1242. doi:10.1152/ajpheart.00429.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  115. Kahler E, Waller C, Rommel E et al (1999) Perfusion-corrected mapping of cardiac regional blood volume in rats in vivo. Magn Reson Med 42:500–506

    Article  CAS  PubMed  Google Scholar 

  116. Waller C, Kahler E, Hiller KH et al (2000) Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 215:189–197

    Article  CAS  PubMed  Google Scholar 

  117. Sado D, Flett A, Banypersad S et al (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98:1436–1441. doi:10.1136/heartjnl-2012-302346

    Article  PubMed  Google Scholar 

  118. aus dem Siepen F, Buss SJ, Messroghli D et al (2015) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 16:210–216. doi:10.1093/ehjci/jeu183

    Article  PubMed  Google Scholar 

  119. Barison A, Del Torto A, Chiappino S et al (2015) Prognostic significance of myocardial extracellular volume fraction in nonischaemic dilated cardiomyopathy. J Cardiovasc Med 16:681. doi:10.2459/JCM.0000000000000275

    Article  Google Scholar 

  120. Wong TC, Piehler K, Meier CG et al (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126:1206–1216. doi:10.1161/CIRCULATIONAHA.111.089409

    Article  PubMed Central  PubMed  Google Scholar 

  121. Hong YJ, Park CH, Kim YJ et al (2015) Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects. Int J Cardiovasc Imaging. doi:10.1007/s10554-015-0595-0

    Google Scholar 

  122. Dabir D, Child N, Kalra A et al (2014) Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 16:69. doi:10.1186/s12968-014-0069-x

    Article  PubMed Central  PubMed  Google Scholar 

  123. Neilan TG, Coelho-Filho OR, Shah RV et al (2013) Myocardial extracellular volume by cardiac magnetic resonance imaging in patients treated with anthracycline-based chemotherapy. Am J Cardiol 111:717–722. doi:10.1016/j.amjcard.2012.11.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Florian A, Ludwig A, Rösch S et al (2014) Myocardial fibrosis imaging based on T1-mapping and extracellular volume fraction (ECV) measurement in muscular dystrophy patients: diagnostic value compared with conventional late gadolinium enhancement (LGE) imaging. Eur Heart J Cardiovasc Imaging 15:1004–1012. doi:10.1093/ehjci/jeu050

    Article  PubMed  Google Scholar 

  125. Fontana M, Barison A, Botto N et al (2013) CMR-verified interstitial myocardial fibrosis as a marker of subclinical cardiac involvement in LMNA mutation carriers. JACC Cardiovasc Imaging 6:124–126. doi:10.1016/j.jcmg.2012.06.013

    Article  PubMed  Google Scholar 

  126. Roujol S, Weingärtner S, Foppa M et al (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. doi:10.1148/radiol.14140296

    PubMed Central  PubMed  Google Scholar 

  127. Caravan P, Das B, Dumas S et al (2007) Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew Chem Int Ed Engl 46:8171–8173. doi:10.1002/anie.200700700

    Article  CAS  PubMed  Google Scholar 

  128. Helm PA, Caravan P, French BA et al (2008) Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology 247:788–796. doi:10.1148/radiol.2473070975

    Article  PubMed  Google Scholar 

  129. Burton RAB, Lee P, Casero R et al (2014) Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart. Europace 16(Suppl 4):iv86–iv95. doi:10.1093/europace/euu234

    Article  PubMed Central  PubMed  Google Scholar 

  130. Blondiaux E, Pidial L, Vilar J et al (2013) Evaluation of rat heart microvasculature with high-spatial-resolution susceptibility-weighted MR imaging. Radiology 269:277–282. doi:10.1148/radiol.13122152

    Article  PubMed  Google Scholar 

  131. Ritter CO, Wilke A, Wichmann T et al (2011) Comparison of intravascular and extracellular contrast media for absolute quantification of myocardial rest-perfusion using high-resolution MRI. J Magn Reson Imaging 33:1047–1051. doi:10.1002/jmri.22557

    Article  PubMed  Google Scholar 

  132. Niedermayer S, Prompona M, Cyran CC et al (2014) Dose response of the intravascular contrast agent gadofosveset trisodium in MR perfusion imaging of the myocardium using semiquantitative evaluation. J Magn Reson Imaging 39:203–210. doi:10.1002/jmri.24091

    Article  PubMed  Google Scholar 

  133. Mahmod M, Piechnik SK, Levelt E et al (2014) Adenosine stress native T1 mapping in severe aortic stenosis: evidence for a role of the intravascular compartment on myocardial T1 values. J Cardiovasc Magn Reson 16:92. doi:10.1186/s12968-014-0092-y

    Article  PubMed Central  PubMed  Google Scholar 

  134. Wassmuth R, Schulz-Menger J (2011) Cardiovascular magnetic resonance imaging of myocardial inflammation. Expert Rev Cardiovasc Ther 9:1193–1201. doi:10.1586/erc.11.118

    Article  PubMed  Google Scholar 

  135. Ambale-Venkatesh B, Lima JAC (2015) Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol 12:18–29. doi:10.1038/nrcardio.2014.159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Barison.

Ethics declarations

Conflict of interest

Drs. Barison A., Grigoratos C., Todiere G., Aquaro G. D. have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barison, A., Grigoratos, C., Todiere, G. et al. Myocardial interstitial remodelling in non-ischaemic dilated cardiomyopathy: insights from cardiovascular magnetic resonance. Heart Fail Rev 20, 731–749 (2015). https://doi.org/10.1007/s10741-015-9509-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9509-4

Keywords

Navigation