Skip to main content

Advertisement

Log in

Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer’s disease

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiovascular disease is a recognized contributor to the pathogenesis of Alzheimer’s disease (AD). Heart failure (HF) is a cardiovascular subtype that can be used to model the contribution of cardiovascular disease to AD. Neuroimaging research indicates that HF patients exhibit a diverse range of structural brain alterations and epidemiological studies suggest HF may be an important risk factor for AD. The neural alterations observed in HF may overlap with those observed in AD and contribute to increased risk of AD in HF patients. To examine this possibility, we reviewed structural MRI studies in persons with HF. We examined subcortical brain regions affected in the early stages of AD (medial temporal lobes), as well as cortical alterations that typically occur in the later stages of AD. Our review indicates that patients with HF exhibit greater neural atrophy and white matter microstructural alterations of nearly every region of the Papez circuit (e.g., hippocampus, cingulate gyrus, thalamus, mammillary bodies, and fornix), as well-significant alterations in cortical and cerebellar regions. Based on animal research and past work in AD patients, the mechanisms for structural brain changes in HF may stem from reductions in cerebral blood flow subsequent to cardiac deficiency. This review supports the hypothesis that HF may contribute to AD risk via widespread structural brain changes, including many of the same regions affected by AD. Case-controlled prospective neuroimaging studies with long-term follow-ups are needed to clarify the risk of AD in HF and elucidate the neural underpinnings of AD risk in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL et al (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  2. Alosco ML, Spitznagel MB, Cohen R, Sweet LH, Colbert LH, Josephson R, Waechter D, Hughes J, Rosneck J, Gunstad J (2012) Cognitive impairment is independently associated with reduced instrumental ADLs in persons with heart failure. J Cardiovasc Nurs 27:44–50

    Article  PubMed Central  PubMed  Google Scholar 

  3. Rogers JK, Pocock SJ, McMurray JJ, Granger CB, Michelson EL, Ostergren J, Pfeffer MA, Solomon SD, Swedberg K, Yusuf S (2014) Analysing recurrent hospitalizations in heart failure: a review of statistical methodology, with application to CHARM-Preserved. Eur J Heart Fail 16:33–40

    Article  PubMed  Google Scholar 

  4. Hjelm C, Brostrom A, Dahl A, Johansson B, Fredrikson M, Stromberg A (2014) Factors associated with increased risk for dementia in individuals age 80 years or older with congestive heart failure. J Cardiovasc Nurs 29:82–90

    Article  PubMed  Google Scholar 

  5. Qiu C, Winblad B, Marengoni A, Klarin I, Fastbom J, Fratiglioni L (2006) Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study. Arch Intern Med 166:1003–1008

    Article  PubMed  Google Scholar 

  6. Zekry D, Hauw JJ, Gold G (2002) Mixed dementia: epidemiology, diagnosis, and treatment. J Am Geriatr Soc 50:1431–1438

    Article  PubMed  Google Scholar 

  7. De la Toree JC (2002) Alzheimer disease as a vascular disorder: nosological evidence. Stroke 33:1152–1162

    Article  Google Scholar 

  8. Bates KA, Sohrabi HR, Rodrigues M, Beilby J, Dhaliwal SS, Taddei K et al (2009) Association of cardiovascular factors and Alzheimer’s disease plasma amyloid-beta protein in subjective memory complainers. J Alzheimers Dis 17:305–318

    CAS  PubMed  Google Scholar 

  9. Toledo JB, Toledo E, Weiner MW, Jack CR Jr, Jagust W, Lee VM, Shaw LM, Trojanowski JQ, Alzheimer’s Disease Neuroimaging Initiative (2012) Cardiovascular risk factors, cortisol, and amyloid-B deposition in Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement 8:483–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Noh Y, Seo SW, Jeon S, Lee JM, Kim JH, Kim GH (2014) White matter hyperintensities are associated with amyloid burder in APOE4 non-carriers. J Alzheimers Dis 40:877–886

    CAS  PubMed  Google Scholar 

  11. Hajduk AM, Lemon SC, McManus DD, Lessard DM, Gurwitz JH, Spencer FA, Goldberg RJ, Saczynski JS (2013) Cognitive impairment and self-care in heart failure. Clin Epidemiol 5:407–416

    Article  PubMed Central  PubMed  Google Scholar 

  12. Pressler SJ, Subramanian U, Kareken D, Perkins SM, Gradus-Pizlo I, Sauve MJ, Ding Y, Kim J, Sloan R, Jaynes H, Shaw RM (2010) Cognitive deficits in chronic heart failure. Nurs Res 59:127–139

    Article  PubMed Central  PubMed  Google Scholar 

  13. Alwerdt J, Edwards JD, Athilingam P, O’Connor ML, Valdes EG (2013) Longitudinal differences in cognitive function among older adults with and without heart failure. J Aging Health 25:1358–1377

    Article  PubMed  Google Scholar 

  14. Almeida OP, Beer C, Lautenschlager NT, Arnolda L, Alfonso H, Flicker L (2012) Two-year course of cognitive function and mood in adults with congestive heart failure and coronary artery disease: the Heart-Mind Study. Int Psychogeriatr 24:38–47

    Article  PubMed  Google Scholar 

  15. Hjelm C, Dahl A, Brostrom A, Martensson J, Johansson B, Stromberg A (2012) The influence of heart failure on longitudinal changes in cognition among individuals 80 years of age and older. J Clin Nurs 7–8:994–1003

    Article  Google Scholar 

  16. Van den Hurk K, Reijmer YD, van den Berg E, Alssema M, Mijpels G, Kostense PJ, Stehouwer CD, Paulus WJ, Kamp O, Dekker JM, Biessels GJ (2011) Heart failure and cognitive function in the general population: the Hoorn Study. Eur J Heart Fail 13:1362–1369

    Article  PubMed  Google Scholar 

  17. Weintraub S, Wicklund AH, Salmon DP (2012) The neuropsychological profile of Alzheimer disease. Cold Spring Harb Perspect Med 2:a006171

    Article  PubMed Central  PubMed  Google Scholar 

  18. Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury CM, Weiner MW (2009) Automated MRI measures identify individuals with mild cognitive impairment and Alzheimers disease. Brain 132:2048–2057

    Article  PubMed Central  PubMed  Google Scholar 

  19. Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN (2009) The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 19:497–510

    Article  PubMed Central  PubMed  Google Scholar 

  20. Salat DH, Tuch DS, van der Kouwe AJ, Greve DN, Pappu V, Lee SY (2010) White matter pathology isolates the hippocampal formation in Alzheimer’s disease. Neurobiol Aging 31:244–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Sperling RA, Celone KA, Calhoun VD, Dickerson BC, Atri A, Chua EF (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 26:10222–10231

    Article  PubMed  Google Scholar 

  22. Sperling RA, Dickerson BC, Pihlajamaki M, Vannini P, LaViolette PS, Vitolo OV (2010) Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med 12:27–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Nishio K, Ihara M, Yamasaki N, Kalaria RN, Maki T, Fujita Y, Ito H, Oishi N, Fukuyama H, Miyakawa T, Takahashi R, Tomimoto H (2010) A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke 41:1278–1284

    Article  PubMed  Google Scholar 

  24. Mattson N, Tosun D, Insel PS, Simonson A, Jack CR Jr, Beckett LA, Donohue M, Jagust W, Schuff N, Weiner MW, Alzheimer’s Disease Neuroimaging Initiative (2014) Association of brain amyloid-β with cerebral perfusion and structure in Alzheimer’s disease and mild cognitive impairment. Brain 137:1550–1561

    Article  Google Scholar 

  25. Austin BP, Nair VA, Meier TB, Xu G, Rowley HA, Carlsson CM, Johnson SC, Prabhakaran V (2011) Effects of hypoperfusion in Alzheimer’s disease. J Alzheimers Dis 26:123–133

    PubMed Central  PubMed  Google Scholar 

  26. Johnson KA, Jones K, Holman BL, Becker JA, Spiers PA, Satlin A, Albert MS (1998) Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 50:1563–1571

    Article  CAS  PubMed  Google Scholar 

  27. Mazza M, Marano G, Traversi G, Bria P, Mazza S (2011) Primary cerebral blood flow deficiency and Alzheimer’s disease: shadows and lights. J Alzheimers Dis 23:375–389

    PubMed  Google Scholar 

  28. Chen W, Song X, Beyea S, D’Arcy R, Zhang Y, Rockwood K (2010) Advances in perfusion magnetic resonance imaging in Alzheimer’s disease. Alzheimers Dement 7:185–196

    Article  CAS  PubMed  Google Scholar 

  29. Kreisman NR, Soliman S, Gozal D (2000) Regional differences in hypoxic depolarization and swelling in hippocampal slices. J Neurophysiol 83:1031–1038

    CAS  PubMed  Google Scholar 

  30. de la Torre JC (2000) Critically attained threshold of cerebral hypoperfusion: Can it cause Alzheimer’s disease? AnnN Y Acad Sci 903:424–436

    Article  Google Scholar 

  31. Alves TC, Rays J, Fraguas R Jr, Wajngarten M, Telles RM, Duran FL, Meneghetti JC, Robilotta CC, Prando S, De Castro CC, Buchpiguel CA, Busatto GF (2006) Association between major depressive symptoms in heart failure and impaired regional cerebral blood flow in the medial temporal region: a study using 99 m Tc-HMPAO single photon emission computerized tomography (SPECT). Psychol Med 36:597–608

    Article  PubMed  Google Scholar 

  32. Alves TC, Rays J, Fraguas R Jr, Wajngarten M, Meneghetti JC, Prando S, Busatto GF (2005) Localized cerebral blood flow reductions in patients with heart failure: a study using 99mTc-HMPAO SPECT. J Neuroimaging 15:150–156

    Article  PubMed  Google Scholar 

  33. Gruhn N, Larsen FS, Boesgaard S, Knudsen GM, Mortensen SA, Thomsen G, Aldershvile J (2001) Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke 32:2530–2533

    Article  CAS  PubMed  Google Scholar 

  34. Vogels RL, Oosterman JM, Laman DM, Gouw AA, Schroeder-Tanka JM, Scheltens P, van der Flier WM, Weinstein HC (2008) Transcranial Doppler blood flow assessment in patients with mild heart failure: correlates with neuroimaging and cognitive performance. Congest Heart Fail 14:61–65

    Article  PubMed  Google Scholar 

  35. Braak H, Braak E (1991) Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  36. Braak H, Braak E (1996) Evolution of the neuropathology of Alzheimer’s disease. Acta Neurol Scand 93:3–12

    Article  Google Scholar 

  37. Jack CR, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757

    Article  PubMed Central  PubMed  Google Scholar 

  38. Woo MA, Macey PM, Fonarow GC, Hamilton MA, Harper RM (2003) Regional brain gray matter loss in heart failure. J Appl Physiol 95:677–684

    Article  PubMed  Google Scholar 

  39. Pan A, Kumar R, Macey PM, Fonarow GC, Harper RM, Woo MA (2013) Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J Card Fail 19:94–100

    Article  PubMed Central  PubMed  Google Scholar 

  40. Canu E, McLaren DG, Fitzgerald ME, Bendlin BB, Zoccatelli G, Alessandrini F, Pizzini FB, Ricciardi GK, Beltramello A, Johnson SC, Frisoni GB (2010) Microstructural diffusion changes are independent of macrostructural volume loss in moderate to severe Alzheimer’s disease. J Alzheimers Dis 19:963–976

    PubMed Central  PubMed  Google Scholar 

  41. Vogels RLC, van der Flier WM, van Harten B, Gouw AA, Scheltens P, Schroeder-Tanka JM, Weinstein HC (2007) Brain magnetic resonance imaging abnormalities in patients with heart failure. Eur J Heart Fail 9:1003–1009

    Article  PubMed  Google Scholar 

  42. Raz N, Rodrigue KM, Head D, Kennedy KM, Acker JD (2004) Differential aging of the medial temporal lobe—a study of a five-year change. Neurology 62:433–438

    Article  CAS  PubMed  Google Scholar 

  43. Braak H, Braak E, Bohl J (1993) Staging of Alzheimer-related cortical destruction. Eur Neurol 33:403–408

    Article  CAS  PubMed  Google Scholar 

  44. Woo MA, Kumar R, Macey PM, Fonarow GC, Harper RM (2009) Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail 15:214–223

    Article  PubMed Central  PubMed  Google Scholar 

  45. Almeida OP, Garrido GH, Etherton-Beer C, Lautenschlager NT, Arnoldda L, Alfonso H, Flicker L (2013) Brain and mood changes over 2 years in healthy controls and adults with heart failure and ischaemic heart disease. Eur J Heart Fail 15:850–858

    Article  PubMed  Google Scholar 

  46. Kumar R, Woo MA, Macey RM, Fonarow GC, Hamilton MA, Harper RM (2011) Brain axonal and myelin evaluation in heart failure. J Neurol Sci 307:106–113

    Article  PubMed Central  PubMed  Google Scholar 

  47. Almeida OP, Garrido GJ, Beer C, Lautenschlager NT, Arnolda L, Flicker L (2012) Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J 33:1769–1776

    Article  PubMed  Google Scholar 

  48. Kumar R, Woo MA, Birrer BV, Macey PM, Fonarow GC, Hamilton MA, Harper RM (2009) Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis 33:236–242

    Article  PubMed Central  PubMed  Google Scholar 

  49. Van der Werf YD, Witter MP, Uylings HB, Jolles J (2000) Neuropsychology of infarctions in the thalamus: a review. Neuropsychologia 38:613–627

    Article  PubMed  Google Scholar 

  50. Hayes SM, Salat DH, Verfaellie M (2012) Default network connectivity in medial temporal lobe amnesia. J Neurosci 32:14622–14629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neuropsychiatry Clin Neurosci 20:11–21

    CAS  Google Scholar 

  52. Jones BF, Barnes J, Uylings HB, Fox NC, Frost C, Witter MP, Scheltens P (2006) Differential regional atrophy of the cingulate gyrus in Alzheimer disease: a volumetric MRI study. Cereb Cortex 16:1701–1708

    Article  PubMed  Google Scholar 

  53. Pedro T, Weiler M, Yasuda CL, D’Abreu A, Damasceno BP, Cendes F, Balthazar ML (2012) Volumetric brain changes in thalamus, corpus callosum and medial temporal structures: mild Alzheimer’s disease compared with amnestic mild cognitive impairment. Dement Geriatr Cogn Disord 34:149–155

    Article  PubMed  Google Scholar 

  54. Thompson PM, Hayashi KM, de Zubicaray G, Janke AL, Rose SE, Semple J, Herman D, Hong MS, Dittmer SS, Doddrell DM, Toga AW (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23:994–1005

    CAS  PubMed  Google Scholar 

  55. Ashburnder J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11:805–821

    Article  Google Scholar 

  56. Hong X, Bu L, Wang Y et al (2013) Increases in the in risk of cognitive impairment and alterations of B-amyloid metabolism in mouse model of heart failure. PLoS One 8:e63829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Erickson MA, Banks WA (2013) Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J Cereb Blood Flow Metab 33:1500–1513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Alosco ML, Spitznagel MB, Cohen R, Raz N, Sweet LH, Josephson R, Hughes J, Rosneck J, Gunstad J (2014) Reduced cerebral perfusion predicts greater depressive symptoms and cognitive dysfunction at a 1-year follow-up in patients with heart failure. Int J Geriatr Psychiatry 29:428–436

    Article  PubMed Central  PubMed  Google Scholar 

  59. Alosco ML, Spitznagel MB, Raz N, Cohen R, Sweet LH, Colbert LH, Josephson R, van Dulmen M, Hughes J, Rosneck J, Gunstad J (2012) Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra 2:88–98

    Article  PubMed Central  PubMed  Google Scholar 

  60. Jesus PA, Vieira-de-Melo RM, Reis FJ, Viana LC, Lacerda A, Dias JS, Oliveira-Filho J (2006) Cognitive dysfunction in congestive heart failure: transcranial Doppler evidence of microembolic etiology. Arq Neuropsiquiatr 64:207–210

    Article  PubMed  Google Scholar 

  61. Aslop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J Alzheimers Dis 20:871–880

    Google Scholar 

  62. Sperling R (2011) Potential of functional MRI as a biomarker in early Alzheimer’s disease. Neurobiol Aging 32:S37–S43

    Article  PubMed Central  PubMed  Google Scholar 

  63. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  CAS  PubMed  Google Scholar 

  64. Daselaar SM, Iyengar V, Davis SW, Eklund K, Hayes SM, Cabeza RE (2013) Less wiring, more firing: low-performing older adults compensate for impaired white matter with greater neural activity. Cereb Cortex 25:983–990

    Article  PubMed  Google Scholar 

  65. Woo MA, Macey PM, Keens PT, Kumar R, Fonarow GC, Hamilton MA, Harper RM (2007) Aberrant central nervous system responses to the Valsalva maneuver in heart failure. Congest Heart Fail 13:29–35

    Article  PubMed  Google Scholar 

  66. Woo MA, Macey PM, Keens PT, Kumar R, Fonarow GC, Hamilton MA, Harper RM (2005) Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure. J Card Fail 11:437–446

    Article  PubMed  Google Scholar 

  67. Dennis NA, Hayes SM, Prince SE, Madden DJ, Huettel SA, Cabeza R (2008) Effects of aging on the neural correlates of successful item and source memory encoding. J Exp Psychol Learn Mem Cogn 34:791–808

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hayes SM, Baena E, Truong TK, Cabeza R (2010) Neural mechanisms of context effects on face recognition: automatic binding and context shift decrements. J Cogn Neurosci 22:2241–2554

    Article  Google Scholar 

  69. Chuang Y, Eldreth D, Erickson KR, Varma V, Harris G, Fried LP, Rebok GW, Tanner EK, Carlson MC (2014) Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults. Neurobiol Aging 35:1396–1403

    Article  PubMed Central  PubMed  Google Scholar 

  70. Sultzer DL, Chen ST, Brown CV, Mahler ME, Cummings JL, Hinkin CH, Mandelkern MA (2002) Subcortical hyperintensities in Alzheimer’s disease: associated clinical and metabolic findings. J Neuropsychiatry Clin Neurosci 14:262–269

    Article  PubMed  Google Scholar 

  71. Appel J, Potter E, Bhatia N, Shen Q, Zhao W, Greig MT, Raj A, Barker WW, Potter H, Schofield E, Wu Y, Loewenstein DA, Duara R (2009) Association of white matter hyperintensity measurements on brain MR imaging with cognitive status, medial temporal atrophy, and cardiovascular risk factors. AJNR Am J Neuroradiol 30:1870–1876

    Article  CAS  PubMed  Google Scholar 

  72. Stanek KM, Guntad J, Spitznagel MB, Waechter D, Hughes JW, Luyster F, Josephson R, Rosneck J (2011) Improvements in cognitive function following cardiac rehabilitation for older adults with cardiovascular disease. Int J Neurosci 121:86–93

    Article  PubMed  Google Scholar 

  73. Hayes SM, Forman DE, Verfaellie M (2014) Cardiorespiratory fitness is associated with cognitive performance in older but not younger adults. J Gerontol B Psychol Sci Soc Sci. doi:10.1093/geronb/gbu167

    PubMed  Google Scholar 

  74. Smith PJ, Blumenthal JA, Hoffman BM, Cooper H, Strauman TA, Welsh-Bohmer K (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252

    Article  PubMed Central  PubMed  Google Scholar 

  75. Hayes SM, Hayes JP, Cadden M, Cadden M, Verfaellie M (2013) A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Front Aging Neurosci 5:31

    Article  PubMed Central  PubMed  Google Scholar 

  76. Hayes SM, Salat D, Forman DE, Verfaellie M (in press) Cardiorespiratory fitness is associated with white matter integrity in aging. Ann Clin Transl Neurol

  77. Honea RA, Thomas GP, Harsha A, Anderson HS, Donnelly JE, Brooks WM (2009) Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis Assoc Disord 23:188–197

    Article  PubMed Central  PubMed  Google Scholar 

  78. Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wojcicki TR, McAuley E, Kramer AF (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039

    Article  PubMed Central  PubMed  Google Scholar 

  79. Erickson KI, Voss MW, Prakash RS et al (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci USA 15:3017–3022

    Article  Google Scholar 

  80. Erickson KI, Weinstein AM, Lopez AL (2012) Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res 43:615–621

    Article  PubMed Central  PubMed  Google Scholar 

  81. Heo S, Prakash RS, Voss MW, Erickson KI, Ouyang C, Sutton BP, Kramer AF (2010) Resting hippocampal blood flow, spatial memory and aging. Brain Res 1315:119–1127

    Article  CAS  PubMed  Google Scholar 

  82. Cotman CW, Berchtold NC, Christie LA (2007) Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 30:464–472

    Article  CAS  PubMed  Google Scholar 

  83. Voss MW, Vivar C, Kramer AF, van Praag H (2013) Bridging animal and human models of exercise-induced brain plasticity. Trends Cogn Sci 17:525–544

    Article  PubMed  Google Scholar 

  84. Ewers M, Sperling RA, Klunk WE, Weiner MW, Hampel H (2011) Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci 34:430–442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Capizzano AA, Acion L, Bekinschtein T, Furman M, Gomila H, Martinez A, Mizrahi R, Starkstein SE (2004) White matter hyperintensities are significantly associated with cortical atrophy in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:822–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Verstynen TD, Weinstein AM, Schneider WW, Jakicic JM, Rofey DL, Erickson KI (2012) Increased body mass index is associated with a global and distributed decrease in white matter microstructural integrity. Psychosom Med 74:682–690

    Article  PubMed Central  PubMed  Google Scholar 

  87. Querbes O, Aubry F, Pariente J, Lotterie JA, Demonet JF, Duret V, Puel M, Berry I, Fort JC, Celsis P, Alzheimer’s Disease Neuroimaging Initiative (2009) Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132:2036–2047

    Article  PubMed Central  PubMed  Google Scholar 

  88. Donix M, Scharf M, Marschner K, Werner A, Sauer C, Gerner A, Nees JA, Meyer S, Donix KL, Von Kummer R, Holthoff VA (2013) Cardiovascular risk and hippocampal thickness in Alzheimer’s disease. Int J Alzheimers Dis 2013:108021

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Veterans Affairs, Rehabilitation Research & Development Service [Career Development Award e7822w awarded to SMH]. The contents of this article do not represent the views of the US Department of Veterans Affairs or the US Government.

Conflict of interest

Michael L. Alosco and Scott M. Hayes have no conflicts of interest or financial ties to disclose. The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Alosco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alosco, M.L., Hayes, S.M. Structural brain alterations in heart failure: a review of the literature and implications for risk of Alzheimer’s disease. Heart Fail Rev 20, 561–571 (2015). https://doi.org/10.1007/s10741-015-9488-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-015-9488-5

Keywords

Navigation